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CHAPTER 1

INTRODUCTION

The acoustic reflectivity from the sea floor is often an important factor
for the performance of ASW systems in different environments, such as in deep
water when using the bottom bounce paths, and in general for sound propagation in
shallow water. Furthermore, it plays a role in the degradation of towed array
operations due to reflected tow ship radiated noise and in certain weapon systems
and with the frequency range of interest which spans over a large band from a few
Hz to tenths of kEz. Therefore there is a need to be able to accurately measure

the reflectivity or predict it from known or assumed geocacoustical data.

At several national naval research laboratories as well at the SACLANT ASW
Research Center, La Spezia, work has been pursued in this field for more than 20
years making a significant improvement in our knowledge in this field. During
this period, the experimental techniques have changed from the use of analog to
digital acquisition, yielding higher resolution and accuracy, and the subsequent
use of computers to analyze the‘data results in faster and more flexible ways of
reporting. Furthermore, today we have a much better, though not complete, under-
standing and knowledge of the geoacoustical parameters for the bottom, including
deeper layers.

The results from the SACLANTCEN activity has appeared in several published
and unpublished reports and articles.[l]'[zl However, to make this more acces~
sible for potential users, it was felt worthwhile to update the material and

issue some of it as a single report.

Special emphasis has been put into combining the theoretical results, with
results obtained not from model tank experiments but from experiments in the real

ocean environment where the action takes place. For this reason experimental and
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digital analysis techniques are included in the report. Furthermore, due to the "
wide introduction of microcomputers, a set of algorithms for the IBM-PC computer [,
! family has been developed to enable the user to carry out "experiments" either in
the office or on board to study the effect of the bottom layering on the reflec- N
tivity. Instructions for using these programmed algorithms are contained in !

appendix A. ' Wy,

It is hoped that this summary report will be useful especially for operators N
and scientists new to this field. However, it should be stressed that only the 14
plane wave reflection coefficient will be considered in this report. For infor- e,
mation concerning the complete wave solution, readers should look into new algo- fﬁ

rithms such as the Fast Field or SAFARI models. | |

This work has been sponsored by the Office of Naval Research and the Naval !
]
Underwater Systems Center and was done as a visiting scientist during an inter- oM

esting and stimulating stay at the Naval Underwater Systems Center Code 10 in New .

London. A
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CHAPTER 2

GENERAL EQUATIONS

From the classical theory of elasticity, we know that a wave propagating
through a homogeneous media is determined by the compressional wave potential

and the shear wave potentials satisfying the following wave equations:

1 o%p
Vi =
. a® ot?
1 22 (2-1)
2 -
VUE TR o
i=1,2, 3

with 0 as the compressional wave velocity and ﬁ as the shear wave velocity.

The displacement U which completely determines a plane wave is expressed as:

G=grad ¢ +curl (2-2)

Introducing an orthogonal coordinate system with the displacement u in the x

direction and w in the z direction, equation (2) simplifies to:

op o¢
u ax 2z (2-3)
W= a¢ *-.?¢

oz ox

By the use of the two elastic constants (Lame'), the stresses can also be related

to the potentials through u and w as:
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The relationship between the Lame’ constants, density, and compressional and

shear wave velocity is the following:

% a= A+ 2” [3 - M
N » V

t$ Analogous to the theory of electricity, we can introduce the concept of an
" impedance 2 defined as the ratio between pressure and the normal component of the

A particle velocity: -

N Z=p/W=-0/W (2-5)

where p is the pressure, ¢ the normal stress, and w the particle velocity. The

minus sign is due to the difference of defining pressure and stress. |

" In the case where the medium is a liquid, it cannot sustain shear which

[

ck means that [ = 0. This reduces equation (2-1) to:

¥

b ¢
E Fo , o _ 1 0 |
N ax2 azz a ot

N '

;:‘

&: With the use of equations (2-1), (2-3) and (2-4), one obtains for g: '
Mt

3 ?
R ¢ ]
i o=p ]
P\ atz ¢
’ ‘
)

::: |

Using Bernoulli's method of assuming that the solution can be written as a

0 product of functions, each depending only on one variable, we equate: '

B @ (x, 2, 1t) = F(x) - G(z) - T(t)

MM ! . n . L » P
O ST AT S LR G R QT T e S G 0 S T R e
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which, after differentiation with respect to x, z and t, gives:

F” GII
—_

2
(¢ G

i
=T

With T depending only on t and F, and G being independent of t, we have:

= -w

-

The choice of sign for the separation constant is due to the requirement of
periodic solutions in time. For the F and G functions, we can write:

Fu Gu _ w2

F 6 &

and setting —_= -h2
F

wz 2
—..2.__K

Gll
we have — = h%-
G a

which leads to solutions of the form:

F = e:;hx and G = e::xz

Letting the waves propagate in the direction of the positive x-~axis, the

potential becomes:

@ (x, z, 1) = (Ae"? + Be™*?) . gilhx- @

where the factor to A and B respectively corresponds to waves travelling in the

positive and negative direction of the z-axis as seen on figure 2-1.
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Figure 2-1. Wavefront Geometry

So we are dealing with plane waves propagating with the wavenumbers K = w/a

normal to the wavefront, h in the x direction and Kk in the z direction, satis-

fying the important condition k2= h?+«2,

From figure 2-1 we obtain the apparent horizontal velocity, which is the
horizontal phase velocity C = w/h = @/sin §. when w?/a®>h?, we see that the
potential will not oscillate with respect to z but decay exponentially. These
types of waves are called inhomogeneocus waves and are frequently associated with

boundary interaction as seen later.
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CHAPTER 3

REFLECTION COEFFICIENT AND IMPEDANCE

Since the waves we are interested in are interacting with the sea floor and
the layers below, the solutions to the wave equation must therefore satisfy
certain boundary conditions depending on the nature of the boundary. The condi-

tions are usually expressed directly in terms of stress and displacement.

For example, for two elastic media in welded contact, both stress and dis-
placement must be continuous across the boundary. In the case of a liquid-solid
or liquid-liquid interface, only ¢the normal component of the stress and the
displacement has to be continuous and the shear stress disappears. For a free

and unloaded boundary, all stresses are zero.

On some occasions it is more advantageous to use velocity potentials instead
of displacement potentials which can be done by multiplying the displaéements by
iw. The requirement of continuity of stress and displacement, therefore, can
also be expressed in terms of stress and particle velocity or impedance as

defined in equation (2-5).

The boundary which is of main interest is the interface between the water
column and the sea floor. Let us now determine the reflection and transmission
coefficients for a plane wave incident from the water as shown in fiqure 3-1.
What the bottom looks like is of no concern at this moment and we will only treat

it as a "black box."

IS RAFULN R OM DA TR ; ) ' 0\ W SR RS L A AT T A AN A T Ryt 3 L\
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s WATER
0 BOTTOM

3 Figure 3-1. Plane Wave Reflection from the Bottom

From the Fermat principle (minimum travel time), we know that §# = . which

ik means that:
K. =K/ =K and hi=h,=h
) The total field in the water can then be written as:
¢ - ¢i + R . ¢i - (eixz + R . e-lxz) . ei(hx-ut)
™ where R is the reflection coefficient.

Differentiating this with respect to t and z, the pressure p and the par-

N

ticle velocity are expressed as:

. - .
e

bt )

¢ _

at2 _pw2¢ =pw2 (euxz + R . e~|xz) . e,(hx<w()

e/
"

-P

2w
Py

-l W ——= WK (emz -R- e-urz) . euhx - wt)

oz

3
"
]
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which at the boundary z = 0, reduces to: :'.:5'.:
O
. . . . ..'.l
p= pw2 (1 + R) el(hx-wt); W = wk (1 _ R) e:(hx wt) ::":‘:
e
. 0. Q
Using the definition for the impedance and h=kcos 8§ and k =w/a, we end up "".:{-
N
(M
with the following equation for the bottom impedance: ::::;:
JOOU
!t'n?(
z-_Pa (1+R) ®
- BT
cos 8 (1 - R) -‘::::::
GQQ:QQ:
]
or for the reflection coefficient R: :';:::
- 0.:||.
A= Z-2o 4.,
"2+ 2o ::::::
LML
i
with Zg = pa/COS 8 being the impedance for the water. :v:;;t
KRN
[ ]
In other words, if the bottom impedance is known, the reflection coefficient .:-:i:!
:"’g“(
LN
can be calculated from the above formula. However, as we will see 1later, the o'.""t;
ek
(S
impedance often is a complicated function depending on both frequency and angle :':':':'
@
of incidence. This is the plane wave reflection coefficient which in optics |is ;:;:!‘,;
iy
(HORN]
termed the Fresnel or Rayleigh coefficient. "':::'
N
Assuming now that the bottom can be treated as a liquid half-space (often a r
ey
OO
good assumption), the shear modulus 4 = 0. As a boundary condition, we will use ::::':
LA
.I'{’\
the continuity of O across the interface. The potential in the bottom, with T ::.:::(
p, st
being the transmission coefficient, is: .'.‘
00
= iy - ithx - 35
¢t = T . eIK z, el( X - wt) .:::‘
i
\
Differentiating twice with respect to t, we obtain the stress in the bottom as: N
az‘p' 2 i h S"mi:
Ob = po ——— = wppT "% - g~ wY R
ot ol
foathe
"y
o
giving: [ )
\v .:E:
- (A4
T =p/ps (1 +R) o
¢
)
U
.l'q:t
9 2 -:
Y,

R AN
Oy I CCHTSONCOS
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or expressed as a function of impedance:

T= 2-p2
Po (Z + Zo)
By knowing the impedance 2 at the boundary it is straightforward to calcu-

late both the reflection and transmission coefficients. Whereas to get the angle

of the transmitted wave, information of the bottom itself is required.

Now let us consider some simple examples looking at the bottom reflection

characteristics for different situations.

10
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CHAPTER 4

THE HALF-SPACE BOTTOM

In the ocean, the bottom often consists of soft unconsolidated sediments
which acoustically can be considered liquid due to the very low shear modulus.
We will therefore study this case in more detail. Figure 4~1 illustrates our
simple model where water has a density of 0 and a velocity of @ and the bottom
has a density of 01+ and a compressional velocity of Q1. The angle of incidence in

the water is # and the angle of the transmitted wave in the bottom is &, .

a p

JT77 777777777777
an P

Fiqure 4-1. Simple Bottom Model

Given that the horizontal phase velocity ¢ along the interface must be the
same in the water and in the bottom, we get from figure 2-1:
C = a/sin @ = ai/sin 6,
or

a/ay = sin 8/sin 6,

which is the Snell's refraction law.

Using the potential for the transmitted wave and equation (2-5), the imped-
ance Z; for the bottom, with a1/COS #i as the vertical phase velocity, becomes:

_ @ P

1 = cos 6,

The reflection coefficient expressed by density, wave velocity, and angle of

incidence becomes:

_ praicosf-pacos b

R =
pr a1 Cos 8+ p acos b,

11
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which with Snell's Law reduces to the classical reflection coefficient:

R = a-cosf-+/ n°-sin’@ (4-1)
a-cos@++/ n®-sin*8

where @ = p1/p is the density contrast and N = a/ai the refractive index.

When studying the reflection coefficient at angles close to grazing, the
following simplified expression can be obtained by using the grazing angle

€=90 - 6 instead of the angle of incidence:

a'sing-+/n®-cos’e
a-sine++/n°-cos’e¢

Por small grazing angles with Sin&€=¢ and COS €= 1, the following can be

obtained:
a
2 +g-1
A=- na 1 ( 2°-a PEEED
n® -1

Using the Taylor expression for the exponential function

ef=1+x+-
the reflection coefficient near grazing can be written as:

2-a .

- £
R=-g vn?-1

This expression will be used later to look at reflection loss anomalies near

grazing.

The form of the reflection coefficient depends on the ratios of a and n. We
will consider three cases correspondiny to values observed in the real world: the
intromission angle, the critical angle, and no critical or intromission angle.

Appendices B and C contain discussions of the values for the bottom geocacoustical

12 0
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parameters observed in the sea floor environment. However, in some of the fol-
lowing examples, extreme values for these parameters have been used in order to

emphasize their relative importance on the reflection coefficient.
INTROMISSION ANGLE CASE: 1 < n < a

This is the most common case with the top bottom layer consisting of uncon-

solidated sediments as has been observed during a large number of experiments.

The argument of the square root I'12 - SiI‘I2 @ is always positive. The coeffi-

cient remains real for all angles and is zero for:

a-cosf=,/n?-sin’g

sin83=\/ a’-n2
a? -1

This angle fg is called the intromission angle or, in optics, the Brewster

or

angle. In optics, at this angle, the reflected and the transmitted waves are
perpendicular to each other; however, in acoustics this is not the case due to
the density effect. In nature where some atctenuation is always present, the
reflection coefficient will not be zero but finite (as will be discussed later).
The phase shift will be zero for angles steeper than the intromission angle and

180° for more grazing angles, meaning that a reflected signal will be inverted.

To show the behavior of the reflection coefficient curve, we will use
results obtained from bottom cores taken in the deep Mediterranean Naples Abyssal

Plain. The averages and standard deviations for the upper 50 cm have been com-

puted as:
relative compressional velocity a, = 0.977 + 0.004
relative density Py =139 £0.04
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the bottom and the density of the bottom water. The reason for using relative

values, as we will be doing for the rest of the report, is that they are inde-

pendent of seasonal changes in the water column.

Also instead of the reflection coefficient, we will use the reflection loss

in 4B defined as <20 Log (R). The reason is that we will need the losses in dB

for the sonar equation.

Figure 4-2 illustrates the loss curve corresponding to the above data and - X

the actual measured losses from the water/sediment interface. One will notice s

excellent agreement except around the intromission angle where the effect of

I A

attenuation is noticeable.

o

‘ ANGLE OF INCIDENCE »
0 10 20 30 40 50 60 70 80 90 3

4 T T I T ! T 1

REFLECTION LOSS UPPER LAYER — NAPOLI

/— COMPUTED FROM AVERAGE OF 21 CORES

a
[ v e

ATTENUATION
25" (a) 1.5 dB/WAVE LENGTH « RUN 1
: (b) 0.6 dB/WAVE LENGTH - RUN 2
! (c) 0.3 dB/WAVE LENGTH

b

LOSS

Figure 4-2. Reflection Loss {Intromission Angle Case)
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CRITICAL ANGLE CASE: n <1, n<nm
This case of having a higher wave velocity in the bottom than in the water

is usually found when the bottom is composed of coarser sediments such as sand.

Using equation (4-1), for angles of incidence larger than arcsin (n), the
reflection coefficient R becomes complex with a magnitude of one and can be
written as R = e“" where ¢ is the phase shift (not to be confused with the ¢
previously used for potentials). This angle is called the critical angle 8. .
For angles more grazing, the reflection becomes total with all the incident
energy being reflected and with the presence of an inhomogeneous wave travelling
in the bottom along the interface. The phase shift is expressed as:

JVsin28 - n? )

¢ = -2 arc tan (
acosé

The phase shift is zero for angles of incidence less than fcr and increases
monotonic to 180° at grazing. The sign of the phase shift is determined from the

direction of the z-axis.

Figure 4-3 illustrates the reflection loss for a sandy bottom with the
relative wave velocity @ = 1.13 and the relative density o0 = 2.0. The loss curves

for taking attenuation into account will be discussed in the next chapter.

NO CRITICAL OR INTROMISSION ANGLE CASE: 1 < n, a < n

This is a rare situation which has been included for completeness and can
occur in the case where the bottom contains gas bubbles, such as methane caused
by decomposition of organic matter in the bottom. This is normally observed in
lakes or bays and possibly could be more common in the future as a result of

pollution.

15
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0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE "/ 1600
[ 1400
[ 120°
- 100° .
| 800 .
- 60° -4
| 400
| 2ge
0° "

™ TN KT O

- e o

-

ATTENUATION -—
——— 0.0 dB/WAVELENGTH

— —-— 0.6 dB/WAVELENGTH
-----=—- 1.5 dB/WAVELENGTH

REFLECTION LOSS dB
PHASE SHIFT

Figure 4-3. Reflection Loss (Critical Angle Case)

The presence of gas bubbles has little effect on density but a dramatic vy
effect on wave velocity through a strong increase in the compressibility of the "
sediments. To understand this, let us look at a unit volume of bottom material d

as seen in figure 4-4. y

GAS

WATER

SOLID

r"""""‘°T""°'T
bt e o s  —— — — L.__._J ———

Figure 4-4. Sediment Unit Volume [ X
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We will assume that the bottom is composed of a mixture of non-resonant
adiabatic-behaving gas bubbles, water, and solids. We will also assume that we
can treat such a sediment as an ideal three-component mixture and that the

equations for elastic waves are valid.

We will now introduce the concept of porosity, defined as the ratio between
the volume of the voids and the total volume of the sediment. The volume of
gases, water and solids are represented in the following ratios as g, x and vy

with g + x + y = 1. The porosity n then becomes n = g + x.
If the density of the solid particulate matter in the sediment is constant,
then from the definition of porosity, the bulk sediment density is given by:
Psea =pg G+pu-(N-g)+(1-n)-ps

where the indices g, w and s respectively refer to gas, water and soliad.

The sound velocity for a liquid is given by

a=\

p-B
where B is the compressibility. We assume that B can be expressed as the sum of

the three component meduli, so in terms of porosity we get:

Bsea =Bg-g+Bu-(n-g)+(1-n)-B;s

and for the wave velocity

3
as \ﬁ’g'g +pw(n - Q) + (1 -n)ps] - [Bgg + Bur(n - g) + (1 -n)Bs

which is the so-called Woods equation for a three-component mixture. The validity
of the above assumptions has been verified through many experiments and in a
later chapter we will use the porosity as an independent parameter to parame-

terize the wave velocity and sediment density.

17

LR

- BN MO AR LA G ' OO0 [
LS AN AN LOS A OO ,_i&g' ?_”“‘,'&’;‘i‘.,l‘.—u "5-- .' “Q' w.“ l' Ay ;'. .".' "' .'..‘ Wl yh'y ALY .'t ) l..... .’ e



y ez g Tl ek €. ox 3ia BYs -k B'a A's A'a §F ra ta b o B R A g g g N TR 0. 0 et Tt 81 1" Y

> . ™ 8129

Pigure 4-5 illustrates an example of the relative wave velocity as a
function of gas content for a 70/80 percent porosity sediment and a methane-
nitrogen mixture, showing the very marked effect for even small quantities of

free gas bubbles.

N A
T
x e S

RELATIVE SOUND VELOCITY
1.0
0.9
0.8
0.7-
¥ 0.6
2 0.5-
0.4
i 0.3 -
; 0.2-

0.1+ GAS CONTENT

80% POROSITY
-~ —-—--70% POROSITY

10:1 CH4:N2

I 1 1
10°® 107° 107 1073 1072

T
= EETI o
.
)

Figqure 4-5. Wave Velocity as Function of Gas Content -y

O,
>

Now assuming that n >> sin §, equation (4-1) can be reduced to the simple

ve
=

expression:

) R = z:/z-cosf -1 J
K . T Zy/z-cos §+ 1

showing that R only depends on the impedance ratio and the angle of incidence

'y with a 180° phase shift for all angles.

R

’-.'a

18

£
t
\J
\J

RN 3 W () 0 e , g pt | A X ", !
N NN R D ) -.'?‘.@',’.»f’,Q,‘J'.‘.i'gl‘i?‘ﬂ,'ﬁ,‘a!‘ AU O R O OO OO KR ML R O OO R OOD RS M8 Mo A S N




TD 8129

FPiqure 4-6 plots the reflection loss for a relative density 0= 1.3 and a
relative wave velocity @ = 0.2 equal to a gas content 0.001. Also on the same
plot are shown reflection losses measured in a lake near the SACLANTCEN where the
bottom contained a high concentration of free methane of which some was released
for each shoot fired during the experiment. The reflected pulses received were
all inverted due to the 180° phase shift from this almost perfect pressure

release interface.

0 10 20 30 40 50 60 70 80 90
ANGLE OF INCIDENCE
1-. b
2‘ % * -
[ ]
3-4 % . b : Y -
o) ?
| L4
4{2 I
s )
| ~
18
6- = ‘ i
7{@ MEASURED LOSSES !
Bﬂ L
9

FPigure 4-6. Calculated and Measured Reflection Losses
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CHAPTER 5

ATTENUATION

Until now we have ignored attenuation in our calculations of the reflection
coefficient, an idealization which is not always permissible. Real-bottom mate-
rials absorb energy; this results in a smoothing of the reflection coefficient
curves, especially near the critical or the intromission angle. 1In this report,
we will not deal wiﬁh the actual attenuation mechanisms or processes but will
introduce attenuation through complex wavenumbers and wave velocities. Looking at
the propagation of a wave with a complex wave velocity a=q-(1-iv), we have
for the wavenumber - K= k' = w/a (1 ~iv)=k - (1+iv))

eikx - eik (1+iv)x = e-vkx . eikx

where the first factor represents the attenuation. The imaginary part of is a
function of frequency and through this report we will consider a linear depen-
dence, which corresponds to a constant attenuation & in dB per wavelength A.

2
Thus, with A = N we get:

6=20"-loge™* =20-log e*™"

and: a=a(1-i0.0183 6)
which can be used in the different expressions for thrc reflection coefficient.

With the presence of attenuation, it can be shown that neither total reflec-
tion nor total transmission exists except at grazing. The analytical calculations
for the reflection coefficient are quite lengthy and the effect is perhaps better
illustrated by using our previous examples. Figures 4-2 and 4-3 illustrated the

reflection losses for varying degrees of attenuation. The smoothing effect of the

attenuation is clearly seen near critical and intromission angles.
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What happens if the attenuation is very large? 1Is the reflection coeffici-

. ent then going to be very small? In such a case, we have v> 1 and nn? = k¥/k? =

= n'? (1+ iv)2 = n? (1 + 2iv - Vz). Inserting this into equation (4-1) and dividing

- both nominator and denominator by v, we obtain: W]

acos é -

Lexe v - - )

A= o - \/n (1/V? =1+ 2i/v) - sin? 6/v . N

'; 8088 + . /nZ(1/v¥ -1 +2i/v) -sin? G/v o
: v

which for v — % gives R = -1, .

e~ =

In other words the reflection is total with a 180° phase shift, when the h
attenuation is high in the bottom. 1In optics, the analog is the reflection of
light from a metallic surface, the mirror--but who notices in the morning that

you are phase-shifted 180°. ]

e

Y gt
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CHAPTER 6

GENERAL LAYERING

So far we have only looked at the most simple bottom model, the liquid half-
space. When inspecting core samples taken from the ocean floor, a large majority
of them show a marked layering, very often alternating between harder and softer
sediments, In this chapter we will therefore study the reflectivity from the
most general type of ocean bottom, one consisting of several parallel sediment
layers, each supporting both compressional and shear waves and including attenua-

tion of both wave types.

Figqure 6-1 illustrates our model for calculating the reflection coefficient
for a plane wave incident from a fluid half-space onto a semi-infinite medium

consisting of n parallel homogeneous and isotropic layers on top of a half-space.

S| B0
Water
O X
1 Q dy
“\
1
2 d2
2
3 di
3
4
n-1
n-1
n
z

Figqure 6-1. Layer Geometry
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Por a wave with the angle of incidence f# in the fluid half-space, the two

angles in the nfhlayer corresponding to compressional and shear waves will be

determined by Snell's Law in the following way:

, Qo _ am Bm -
' - = = = — =cC (6-1)
sin & sin 8m Sin Nm

where ¢ is the horizontal phase velocity.

From the relationship between wavenumber and velocity,

&):koa'o:kmam:KmBm

equation (6-1) can also be written as follows:

kO Sln 00= km S|n 0m=Km S|n nm= h

where h = w/C is the horizontal wavenumber, and k and X are the normal wavenum-

bers in the nfhlayer for the compressional and shear waves.

AN In this case we will need the potentials for both the compressional and

. ei(h)( - wt)

shear waves. Using the form g(z) for the potentials and inserting it

W into the wave equations from chapter 2, a solution for the nf"layer can be

written as:

®Om = [Am g ikmCOS OmZ 4 Bm g@lkm €OS b z] gi(hx - wt)

wm = [Cm e-ixm COS NMm Z 4 Dm eixm COS Nm z] e|(hx - wt)

The four constants are to be determined from the boundary conditions, which are

continuity in stress and displacement, or more conveniently as continuity in par-

ticle velocity. By differentiating equation (2-3) with respect to time and com-

bining this result and equation (2-4) with the expressions for the two potentials

above, we get the following matrix form in which the quantities of interest are

expressed by the four constants Am, Bm, Cm and Dm.
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(a/e] = -tn ti2 tia t1j (Am + B ':::
V.V/C 124 ta2 t2s t24 Am - Bm h'a
o tan ti2 taz tas Cm - Dm g

T a1 ta2 tas tas _Cm + Dm_ ‘:::;

or, using the more convenient matrix notation, wY

S=T(z]P ;.

i(hx - wt)

]
Omitting the common factor € , the elements in T are: P9

t1s = -(am/c) cOS am h * z
ti2 = i{am/C)? Sinamh - z R
t13= -Ym bmCOS bm h - 2
tis =i Ym Dm Sin b h + Z o
t21 = i{@m/C)? @m Sin@m h * Z W

ta2 = -(@m/C)? @m COS @m h - Z e

tzs = iymsSinbmh -2z A
t2s = ymcOS bm h -2z A
t31 = =Pm @ (Ym - 1) COS @m h - Z :
ts2 = iPm @2 (ym~ 1) sinamh + z
tasa = =pm C* Yrm Dm COS bm h - 2 o
tae = ipm C* Y bm Sinbm h + Z 2

ta1 = =i Pm A2 Ym @m SiN @m h * Z

P Q2 Ym @m COS @m h * Z Xd

taz
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O
ts =i pm C? Ym (ym- 1) Sinbmh -2 9
'l‘t
.
t44='pm027m()’m'1)COSbmh'Z :l:
»
(¥4
"
‘2
where am = COt fm and bm = COt Nm t'.:',
o:G';
2 ik
and Ym =2 * (Bm/C)
WAl
.
o
So for a system of n layers, we get 4.n equations plus one for the water- 4::
..‘
column and two for the limiting half-space, to determine the 4en + 3 unknown .
]
constants. Since we are mainly interested in the calculation of the reflection Gl
D
U
coefficient, we will not try to solve the equations directly, but use a method :::‘,
..‘1
[}
based on transfer matrices due to W.T. Thompson and later modified by N.A. )
(31,141 i
Haskell. Wl
3
W,
ey
Placing the origin of the z-axis at the(m - 1)thinterface, we get for z = 0 :;:
and Z =dm o
5
- = - ¢
Sm-1=Tm [0] * Pm ':
D
and (6-2) N
- = - e
Sm = Im [dm] * Pm ‘:;.:
’c;:’:
- t
where Om is the thickness of the layer and in which indices for § refer to the XY
= . — »
interface and indices for T and P refer to the layer. ;
(]
R
- ':'c'
By eliminating Pn from the two equations, we get a relation between the :!':f
O]
N
value of velocity and stress at the top and bottom of the m"‘ layer:
)
(6-3) '.5:
— = = _ -— )
Sm = Tem [dm] = T [0]™" - Semet W,
or .':
®
—— = — -8
Sm = Am ¢ Sm-1 ;:"i
R
XD
X
U4
00
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- ' 0,
The elements of A, can be found after some simple but quite lengthy calculations. ule

A11 = ¥n COS Po =(yn - 1) cos Qn ®

A2 = i[(yn - 1) sin Pa/an + ya ba sin Qn) ()

A3 = -(cos P, - cos Qn)/pn C° ot

Ase = i(Sin Pa/an + ba sin Qn)/pn €2 s

A21 = -i[yn @n Sin Pa *+ (¥n - 1) sin Qa/bn] i
A2z = =(yn - 1) cOS Pn + yn cOs Qn °

Az23 = i(an sin Pn + sin Qu/ba)/pa ¢° bl

A24 = A13 '.&‘o‘l

Az1 = pi €2 ¥n (yn - 1) (cOs Pn - cos Qn) T

Az = ipa €2 [(yn ~ 1)% sin Pa/an + & bn sin Qu] )

A3z = Azz, Azs = Av2

Asr =i pn ¢ [y2 an sin Pn + (¥ - 1)2 sin Qn/bn) ot
Asz = Az ' it

Aaz = Az any

Aas = Ay S

where »

@n = COt Bn, bn = €Ot N, ¥ = 2(Bn/C)?,

Pn an'h'dnandonzbn'h'dn “i';

The elements V; of the half-space matrix ?[0]_' are: toM

Vi1 = -2(Bm/am)? W

Via

( pm afs)-' Vi

27 .
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A0
V22 = 62 (ym - 1)/Q am : o
A
V24 = ( Pm an?l am)-1 :"::r
e
Var = (pm = 1)/Ym * bm X
- 2 -1 ‘:::
Vaz = =( pm C° ym bm) o
A
V42 - 1 att
Vie = 2 ym)™ .
44=(Ppm C° yYm) ‘:K,’
g
0'9'
00
Vi2=V1a=V21 = Va3 =V32=Vas = Va1 = Va3 =0 .::::
i
®
To take the attenuation in the layer into account, we will wuse complex ;o;,‘
h, 4%
.'((;
wavenumbers as before., Ignoring the attenuation in the water means that both k, ::.{
)
.l
h and ¢ are real, but from Snell's Law we see that the wavenumber, velocities :!’;
@
and angles of incidence will be complex in a layer with attenuation, which again ‘,;it
- 0N
means that the elements in A are complex. .\::L
‘::vf
%
From the conditions of continuity and successive use of equation (6-3) ‘
‘Q“
— = 3 - — \,:Ze
Sa-1 = Ap-1 - An-2...A0"So ::‘:‘
Ky
and from equation (6~2) :5:;
SO8
-— ) _ = = = -— - .
Pa=Ta [0]7" * An-1 * An-z . .. Ao * So (6-4) s
¥,
y‘!f
— = - 9%
where P, represents the potential in the lower half-space, T[0]”' the acoustic f,;;,:
\
f— - 4y
= == ()N
properties of the half-space, An-y ... Ag the acoustic properties of the layering, '
- . RYR
and Sp the upper boundary condition. In the two half-spaces 0 and n, certain ::::{
W
conditions have to be met. No shear stresses or shear waves can exist in the ::
.‘
0
fluid, which means that p
LA(
T=Co=Do=0 s
)
\::.‘
l"|!'
For the solid half-space to ensure a limited potential for Z — + oo, fotel:
\& 7O

Ba=Dn=0
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Inserting the above-given values into equation (6-4)

(A] = [hi hiz hie hd] u/c]
An has  hzz  hzs  hzs w/c
Cn has  haz  has has o

LCn] [hat haz2 has h«J | 0

vhere the matrix H = ?n (01" - an ... Ao.
Eliminating A, , Cn and U/C gives:

Wie = (P13 = h23)(hay ~ ha1) - (N33 = haz)(h11 =~ h2y)
T (M2 = ha2)(ha1 = ha1) - (h11 = h21)(haz - haz)

or from the definition of the bottom impedance as —cr/\n.l, we get:

(h12 = h22)(ha1 = hat) - (h11 - h21)(haz2 - ha2)

2o =
® 7 ¢+ (h1s - hza)(har - ha1) = (Nas - haa)(has - hay)

and for the reflection coefficient

Zo~-2

R=— 37

where Z is the water impedance.

Because of the complexity of the equations, they are not well suited for an
analytical study except for some simple cases, which will be presented in the
following chapters. For a more general purpose, the above equations have been

programmed for an IBM - XT in Microsoft FORTRAN as described in appendix A.

29/30
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CHAPTER 7

SOLID HALF-SPACE

With only the half-space and no layers present, n =1 and the H
== E
becomes H =T[0].1 . Inserting the values for t; , we get for the

impedance:
c? (y1-1)°

a? Y1 &y b1

(rr-1-c +2 (B+/a1)?
P az Y1 by P1 C y1 by

+2 (B/av)?

Zo =

matrix

bottom

which is not a convenient expression for analytically studying the reflection

coefficient. Using the different relations between the angles 8 and n and c, the

[5]
bottom impedance as shown by Brekhovskikh becomes:

P 1 2 P B . 2
Z,= ———- cos? 2y, + —— - sin 2
®~ “cos 6 M "Cos m M

Using Snell's Law with the relative wave velocities, we have:

sin 8 sin 6 sin m

1 - (28] B1

showing the possibility for two critical angles determined by
84 = Arc sin (1/an)
0, = Arc sin (1/44)

respectively for compressional and shear waves.

In the following, we will study three different cases depending on
values of aryand f3, :

a) a>1>p6

One critical angle

b) a1 > B >1 Two critical angles

c) a1>ﬁ1 >109

Rayleigh interface waves

the

31
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ONE CRITICAL ANGLE a1 > 1> B4

This is the most common case when we are dealing with a bottom consisting of
consolidated sediments as often found in shallow water. Figure 7-1 illustrates
the 1loss and phase shift when ai= 1.13, [y = 0.4 and p1 = 2.0. Two values for
the attenuation are used, 0 and 1 dB/A. The values for no shear are also shown
for comparison. Clearly, the presence of shear waves "softens” the bottom, due

to energy being carried away from the interface by them.

ANGLE OF INCIDENCE

) n
w
- W
(7]
g :
- [m)]
- =)
o) L
Q L
0 &
L_LI’ w
w [7p}
w Lo
@ I
Q

— 0 dB/A
--==1dB/A

ATTENUATION /

Figqure 7-1. Reflection Loss for a Half-Space with One Critical Angle

TWO CRITICAL ANGLES a; > f8; > 1

This is the case when we are looking of reflection from a sedimentary rock
half-space. Figure 7-2 diagrams the reflection loss and phase shift for the
following acoustic values: a7 = 1.87, f, =1.07, py = 2.2, again with O and 1

dB/ attenuation for both waves.
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ANGLE OF INCIDENCE

0 30 60 90

0 f i L _1 ¢ 1 1 _ _180
% }-150 $
~ w
%) 5+ a4
8 -120 §
- =}
Z
e 90 &
o 101 0 dB/A ! &
; 1 9B/ ATTENUATION Ve Le0 u
w ) <
(vl I

15+ 3o @

"k—‘ 0

Figqure 7-2. Reflection Loss for a Half-Space with Two Critical Angles

As the grazing angle diminishes and we reach the critical angle arc sin
(1/a4), the reflection will be total, but only at this angle when no attenua-
tion 1is present. For angles between the two c;itical angles, the reflection
coefficient will be less than one, since the shear waves will be carrying energy
away from the boundary. 1In this interval, the bottom impedance is complex, and
when the imaginary part is zero, the phase shift is also zero. This corresponds
to cos? N1 = 0 which gives 1y = 45° and from Snell's Law, & = arc sin (Vﬁf/
2:B1) = 41.36° in our case. From differentiation with respect to 17}, this
value also corresponds to a mirimum as seen in figure 7-2. Only after the last
critical angle arc sin (1/,31) = 69.2° or 20.8° grazing has been reached, can

total reflection occur.

RAYLEIGH INTERFACE WAVES a; > 81> 1.09
This case is not a typical situation, but it is interesting, being related

to the propagation of Rayleigh interface waves. Figure 7-3 shows the reflection

33
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loss and phase shift for the following bottom parameters:

P1=2.5 with no attenuation included to enhance the shape of the curves.

DD WU WA W VU WU W WL W W W WU R VR TV RO OO T

o y Y Y A ' " A R Y - Y ~
A R Rttt LAl Rt Y 4-" IR NN LA,

1

. 'V‘

A0

P A S\ i S A

YRR RO T XK

ay = 3.48, B1 = 2.0,
The

phase shift curve again has the minimum for 8 = 20.705°; it also has a jump from

&
jg‘ +180° to -180° for § = 32.92°. The Rayleigh wave velocity for a half-space with
4 the above constants can be shown to be Vg = 0.920' 8y = 1.840, which turns out
:3 to be equal to the horizontal phase velocity ¢ = 1/ sin( 32.92 ) = 1,.,840. This
ki
KN
eﬁ' value can be shown to correspond to a pole in the complex reflection
\"5
3
W coefficient.
3 ANGLE OF INCIDENCE
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CHAPTER 8

LIQUID LAYERS

Before looking &t some examples for layers with both compressional and
shear waves, let us consider a bottom consisting of unconsolidated sediments
which acoustically can be considered liquid due to the very low shear modulus.
We will study this type of layering in more detail since some of the results we

will obtain are useful for the understanding of several reflection processes.

In this case y =2(B/c) =0 and no shear potentials exist so the boundary
conditions are reduced to the requirement of continuity of only o and W across
an interface. The 4 x 4 T matrix reduces to a 2 x 2 matrix and we obtain along

the same lines as in chapter 6:

— - - - |t t
S=T[z]PwithT=|"
ta ts2
and §= Wéc and E_—_ A+B
A-B

Using the appropriate values for {; from chapter 6, we get the following for
the mtﬂ layer:
i(@m /C) @m * SiN Pm ~(a@m /C) @m * cOS Pm

Tm[d] =
(] Pm * A * COS Ppm -i pm * a3 - sin P

where Pm = am-h-dm 1is the phase shift through layer m.

0 1/pm * an'z\
-1/(am /¢)? am 0

which with X = ='EI'.[d] ?[0]‘1 gives:

T 0] =

- c0S Pm i@m (Om * €%)7" - sin Pm

i pm €% @m' * SiN Pm cos Pm

s
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For the total number of layers:
— == - - =R - -
Sn-1 = An-1 * An-2 . . . Ay - So=ASo

which is the matrix equation relating the boundary conditions at the bottom and

the top of the layering. Or:

P=T[0]"-A-S=H-S

:: Al = {hyy hi2 w/c hi1 = h24

0 which with and Zo = -0/W gives: Zp = ——— T .0
A (PYREE  PPY O ¢ (h12 - hz2)
o
N W
q
A and reflection coefficient R=(zo-2)/(zZn+2Z) . Let us now consider some
§
o
W simple and illustrative cases. )

The Bottom Consisting of a Half-Space

& With no layers present, H = T[0]' and we have: 3

K his = ha2 = 0, h12 = 1/py af and hzy = -1/(a1/c)? - @y + so that

Zo = ai pi/cos 61

- .

et W -

agreeing with the previous results.

Ce s

The Bottom Consisting of a Single Layer over a Half-Space

In this case, we get for the H matrix:

3 0 1/p2 a3 cos P, ia; (01 ¢%)7" sin P 1

X
n

-1/(a2/c)? az 0 i py c? a7’ sin Py cos P,

36
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with the index 1 and index 2 referring respectively to the layer and the half- ‘o:.':

)
space. b

After some lengthy calculations and setting Z; = @i p1/COS 6y and 22 = a2 po/ ST

COS 62, the total bottom impedance becomes: i

22 cOs Py +i 2y sin P, =
]
cos P1 + i z2/z1 sin P, Tt

and the reflection coefficient becomes:

) ZZ> Y
(Z2 ~ 2) + i(zy -T) tan P, w0
R= ! ‘.'Q"
\ ZZ> )
(z2 +z) +i(24 +—z———) tan P,
1

where 2 is the impedance of the water. L

Contrary to the simple half-space solution, the reflection coefficient is X
an oscillating function of P, which can be written as Py = 27 (d4/A4) cOs 6. For -
vertical incidence, two special cases exist, one corresponding to a layer thick- e,
ness equal to a number of integer half-wavelengths and one corresponding to an X3

odd number of quarter~wavelengths.
IfP=mmTform=1, 2, 3..., sin P = 0 and we get: '.!.'
R=(z2-2)/(z2+ 2), ®

meaning that a half-wave layer has no j.nfluence on the reflectivity which is E
being controlled only by the half-space. This could also be seen from the & ).‘
matrix for a layer, which, for sin P = 0 and cos P = 1, reduces to the unit o
matrix, meaning that such layers have no influence on the total reflection W

coefficient. "

3
)
If P=mmW/2 form=1, 3, 5,..., cos P = 0 and sin P = 1 and we get: S‘:

5 -;;-,;
(Y

i

: "I\ : n r :
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R = (23 - Z2Z)/(Z% + Z2°2)

Therefore, if Z, = ./Z'Z . no reflection takes place. This particular case
is very frequently utilized in optics where quarter-wave coatings are used to

increase the transmitted light in, for example, lens systems.

et To illustrate how the 1loss depends on the frequency and the angle of
4y
R
1§ incidence, we will study the case with the acoustic constants as given in table .
¥y
8-1.

i Table 8~1. Bottom Acoustic Constants for a Two-Layer Model

ALPHA BETA RHO AA AB DEPTH
K .970 .000 1.450 .100  .000 1.000
W 1.050 .000 1.850 .300  .000

where AA and AB are the attenuations in dB per wavelength.

;‘:g The losses are shown in figures 8-1 and 8-2 for 15° and 60° angles of

Uy

:E incidence, respectively. Note that the interference pattern clearly corresponds

‘:; to quarter- and half-wavelengths in the layer with minimum losses equal to the \
3‘:.‘ case where only the half-space was present. As the angle of incidence increases,

W . v
':: there is a shift toward higher frequencies due to the cos # term for the phase :
™ shift in the layer. X

- -
.—---,
—

The formula for the reflection coefficient can be rewritten using the two

e "
-

local reflection coefficients at the two interfaces 0 and 1, with roy = (Z, - Z)/

-
~o "%

(Z1 + Z) and ryz = (Zz - 21)/(22 + 21)1

e
P e s

- 8
>
-

r01 + r12 . e'2lk|dx

1+ 12 * ot * e-2|k.d.

(R R
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an expression attributed to the famous astronomer G.B. Airy in 1833. This

result can also easily be obtained by the following considerations. Looking at

-~ -
-
P Sty ¢

the ray paths in the layering as seen in figure 8-3, we can write the total

reflection coefficient as:

-

- -2ik,d —4i s
R=ror1+to1 Mz tio- e " “+tg1°rz-rg riz-tio e 4'k"""’to1'l’12'l'1o'l'12'l'1o'f12'e Skidiy . '

R=ror+tor M2 tio(1+ro-rz e+ rip-e*™%+ ) 9

e N S v

-2ik,d, | 1
1-ro rz-e

R=ros+tor ra-to-e

~2ik,d, .

with e‘izk‘d‘ being the phase shift for a double passage through the layer.

S

! \ Q.‘
» \ 4.t

\ \ ~ )

Ray Paths in Layers

Figure 8-3.

Rearranging using [ = =f; and ti=1+r;, , the above reduces to the oty
\

Airy expression which is very useful and can be applied recursively to calculate

4
! the reflection coefficient from a multilayered medium. We will later use it to ' ‘

study some special cases, such as a density gradient in a layer and reflection

close to grazing.

For weakly reflecting layers, the local reflection coefficients are small

compared to unity and we can ignore second order terms. Thus, the reflection ¢

coefficient can be written in the simple form:

R =ro) + ry2 - e

40
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a formula well suited for recursive calculation in the case of multilayers. This
approximation corresponds to the graphical polygon technique used in optics
before the days of computers by calculating the reflection coefficient wusing
vector addition of the local reflection coefficients for a set of layers. Though
this method is now obsolete, it is quite illustrative and we will use it for the
three~layer model given in table 8-2 and construct the reflection coefficient

for = 0, 150, and 300 Hz at vertical incidence.

Table 8-2. Bottom Acoustic Constants for a Three-Layer Model

ALPHA BETA RHO AA AB DEPTH
1.050 .000 1.890 .000 .000 1.000
1.130 .000 2.050 .000 .000 1.500
1.870 .000 2.200 .000 .000

From the two reflection coefficients, we get:
R =roy + Ry - e2#
R1 = ri2 + rz3 - €22
as a function of the local reflection coefficients and the phase shift in the

two layers. From the impedances, these are easily computed:

ror = 0.332
ri2 = 0.075
rza = 0.279

In the following we will give the reflection coefficient and phase shift
obtained (1) graphically (signified by "graph”) from figure 8-4, numerically

("num”), and exactly ("exact”) using transfer matrices.

41
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a) £ = 0 Hz
In this case, ¢@; = ¢3 =0 and the local reflection coefficients are on the
same line as seen in figure 8-4. Computing the equation graphically, numeri-

cally, and exactly, we get:

R =0.332 + 0.075 + 0.279 = 0.69 (graph)
R = 0.686 (num)
R = 0.609 (exact)

b) £ = 150 Hz

The two phase shifts in degrees are:

$=360-0.1-1.0/1.055 = 34.12°
@3 =360-0.1-1.5/1.13 = 47.79°

Results obtained are:
R =0.18 and ¢ = -58° (graph)

R =0.178 and ¢ = -55.9° (num)
R =0.194 and ¢ = -55.99° (exact)

c) £ = 300 H2

The two phase shifts are obtained as above, yielding

¢ = 128.48°
¢z = 191.16°

From the vector addition, we have:

R =0.51 and ¢ = 13° (graph)
R =0.510 and ¢ = 13.8° (num)
R = 0.494 and ¢ = 8.84° (exact)

The accuracy of the approximate method, whether graphical or numerical, for
the above cases can be considered to be quite satisfactory for the interference

effects from the different layers.
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Figqure 8-4. Vector Addition of Reflection Coefficients

Now let us look at the phase shift as a function of frequency and impedance
for this simple two-layer liquid bottom. The phase shift is determined as

Im[R]

tansz_efR—]

where Im{R] and Re{R] are the imaginary and real parts of the reflection coeffi-
cient. Inserting these values and setting the phase shift in the layer 2 ky dy =
@. the phase shift for the reflection becomes:

r2 (r§1 - 1) sin (0/]
for (r22+ 1) + r12 (r3y + 1) cos @

tan ¢ =

We will discuss some different cases according to the relative magnitude of

the two local reflection coefficients, Tgy and ry2, and assume that the angle
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Y
of incidence is 1less than critical and that the reflection coefficients are ﬂ
L4
'
small compared to 1 so we can ignore higher order terms. The expression for the .
)
# phase shift can then be rewritten as: &
. W
tan y -sin ¢ "
an y = ,
ro1/f12 + COS ¢ .:“
2
a) N2> o ’ ;\:
-_— ]
O
This corresponds to a weak reflector on top of a stronger reflecting half- ;{
W
space. The phase shift becomes: )
o
'
tan ¢ = -tan ¢ .::x';
4
|’:;
and 6:;
o\
Y = -¢ = -2k, cos 6, d1 or N
. ]
2d, cos ¢1 I
an bets
o,
“ql,
which is a linear phase shift corresponding to a simple time delay as one would
W
expect. ﬂﬁ
i
Wy
b) To1 = T2 %
[
In this case the phase shift is Wﬁ
(]
sin ¢ o
tan ¢ = Y
1+ cos ¢ o
)
0 |‘t
Y= -¢/2 °
) é%
again a linear phase behaviour with respect to frequency but with only half the 4&.
0.@;‘
slope or time delay as compared to the case above. . ,¥
LUS

Pigures 8-5 and 8-6 show the phase shifts calculated from the transfer
matrices and clearly demonstrate the near-linear dependence. This is also very
often the situation observed from experiments, even when we are dealing with a

complicated multilayered bottom as seen from figures 16-3 and 16~-4 in chapter 1l6.
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CHAPTER 9

HIGH LOSS AT GRAZING

It is frequently believed that with a bottom for which a critical angle
exists and for small grazing angles, reflection will always be close to perfect,
with no or very little loss. Although this can be true, there are situations

where the reflection coefficient behaves differently.

The sea floor under consideration is a soft, low-velocity layer on top of a
harder, high-velocity half-space as indicated in figure 9-1. Withaz> 1 >ay and
Fo1 and ry2 (the local Rayleigh reflection coefficients), we have an intromission
angle case for lfg; and a critical angle case for 2 . Further, we will consider
the case where § is small and @ < arc cos (1/az) , in other words the reflection

from interface 1-2 is total.

Figqure 9-1. Layering Geometry

Using the Airy expression from the previous chapter for the reflection coeffi-
cient for the complete layering and in this case the more convenient grazing

angle instead of the angle of incidence, we get:

for + r2 - €@
R (6, k) = , (9-1)
147101 °ry2°€"?

where ¢ = 2Kd - Sinu is the geometrical phase shift through the layer, with k

being the wavenumber. We will study this expression in more detail for § — (0 .
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From Snell's Lzw, we have

cos8d _ 1
cosy ~

u arc cos (ai * cos §),

du _ a, sin 8
dé /1 - (a1)®cos® 8

du
hich for 8§ - 0 qi = -0.
w [ or gives de

This means 4 will vary little with & for # close to zero, and we will consider

it constant and equal to WUo.

For small grazing angles, as discussed in chapter 4, the local reflection

coefficient is expressed by exponential functions:

~-e-Qe

for =
= e Sy

f12
with
- 2 ps

T V@) -1 (9-2)

2 pa/p1

\Y/ (0'1/(12) -1

For 2> 1 >y, Q is real and positive and S' is imaginary and negative:

§ =22 s
Vv1-(a/az)

and (9-3)
R23 - _eiSy - el(Su—rr)_

Inserting equations (9-2) and (9-3) into equation (9-1), we get:

_eQO + el(sﬂ'”) N e|¢

R (4, k) =
(6 ) 1 - eOH . ellS;t—rr) . el¢
or
Qe i(Su-m+2dk-sinu)
-e" + e
R (6, k) = e —
1 - e00 ) el(Su-rr*de-smy)
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which for @ — 0 and u — Lo gives A

1 - eiSyo-rr+2dk-sinyo)

- _ = - 2
?—f-ko) ) 1- eiSﬂo-rr*de-sinuo) 1 &

as expected: total reflection with a 180° phase shift. W

But when  @°WoTr2dksinu) = 4 (9-4) ol

we have a singularity with R — —g- for 6 —0..

From physical reasons, we know that |R| < 1 and we can, therefore, expect R
to have a minimum. This can also be shown by numerical calculations since the 'Q‘.
work involved in the analytical study of R(k) at this singularity is very i

tedious.
From equation (9-4), we find 0
S-u-m+2dksinu=2n-m,n=0,1,2,... ,'s"'xi

and with k = 27/A \:“:e

(9-5) ".ﬂ"

d) _ (2n + 1)7 - Spo RS
( Al 4msin o !

For these values the reflection coefficient will be very small, even very close
to grazing. Figure 9~2 shows the reflection loss as a function of § and d/A for

p
the layering used in the previous chapter. E
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Figure 9-2. Reflection Loss as a Function of Wavelength v,/

for 1° and 2° Grazing Angles Wy

J
Using the above parameters at equation (9-5), we can then calculate the d/A "

values for which high losses are expected: 4

W _(2n+1) 7 - 1637 i
(@/2)n = 3.055 » 2

This yields ' ®

049 n=0 .
d/A= { 255 n=1 -
- it
461 n=2
One should note that the value of d/A = 0.49, close to 1/2, is a coinci- 2

dence and that d/A values increase with increasing hardness of the lowest layer, y

with d/A approaching 0.8 for n = 0 in the case of a very hard layer. 3
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These high-loss d/A values are shown in figure 9-2 as arrows and agree very
well with those calculated numerically from equation (9-1) at 1° and 2°
grazing., To indicate how the loss varies with grazing angles for different d/A
values, figure 9-3 shows the losses for the same case with d/A = 0, 0.5, 2, and
o, the first and last corresponding to only the high-velocity half-space and a

. half-space with the characteristics of the upper layer. Note the extremely small

angle for which a high loss is obtained for d/A = 0.5.

0<
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REFLECTION LOSS (dB)

P T v — b PR T L

80 80 70 60 50 40 30 20
GRAZING ANGLE (degrees)

o e W e

Figure 9~3, Reflection Loss as a Function of Grazing Angle

ksl

How can we explain these reflection loss anomalies for discrete d/A values?
! Let us look at the waves being reflected inside the first layer, as seen in

figure 9-4.

- -
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Figure 9-4. Wave Path in the Bottom Layer

when § — (0, the local reflection coefficient g = 1 with a zero-degree
phase shift, since we have a plane wave coming from medium 1 being reflected
from the higher medium O, where Lo is in fact the critical angle. Writing the
equation for conditions under which the wave fronts interfere constructively in

layer 1, we get:

(AB+BC)-k+yr+¢y2=2m7-n,

where {1 and Y2 are the phase shifts at the two interfaces. From the above, (/1= 0
and Y2 =S o - T, AB + BC is easily expressed by d, and W as:
AB + BC = 2d sin uo or (9=6)
Suo + 2dk sin ug - w = 2mwn,
which is exactly the same criterion for the singularities in the reflection

coefficient.

This means that we are dealing with the propagation of trapped modes in the
top layer and their characteristic equation is equation (9-6). With Jjust a
small amount of attenuation in the layer, it absorbs most of the incident energy

and thereby creates a low reflection coefficient just close to grazing.

- e -
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In shallow water sound propagation, one can also show that these singular
frequencies correspond to similar singularities in the frequency-dependent

transmission loss.

Figure 9-5 illustrates the relative sound speed and density measured on a
core taken on the Italian continental shelf. Using these acoustic parameters
N with a water sound speed of 1500 m/s and the layer depth d = 3.7 m, we find from
equation (9-5) that high losses near grazing are expected for:
200 Hz,
1050 Hz,

1900 HZz,
2700 Bz,

£
f
£
£
which are within the frequency ranges for both active and passive sonar systems.

1.8 4
1.6 +

1.47

RELATIVE DENSITY

1.2-
1.05 -

1.00 4

RELATIVE SOUND SPEED

0.95-

L L] ¥ ¥

0 ) 2 3 4 5
CORE LENGTH (m)

Figure 9-5. Sea Floor Characteristics

As a further illustration, the transmission losses for iso-velocity condi-~-

tions at a range of 35 km and for a water depth of 115 m with bottom character-
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istics corresponding to the above core have been calculated. Figure 9-6 very

markedly shows the effect on shallow-water transmission.

o % HIGH TRANSMISSION LOSS SOURCE DEPTH 50m
OT PREDICTED FROM THEORY RECEIVER DEPTH 50m
OF REFLECTIVITY

80 -

Ba%

f,= 200H:2
f,= 1050Hz
f,= 1900Hz
120 9 £, 22700Hz

100 -

*

TRANSMISSION LOSS (dB)

‘40 T | | T
o 50 100 200 400 800 1600 3200

B FREQUENCY (Hz)

Figure 9-6. Transmission Loss as a Function of Frequency
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CHAPTER 10

DENSITY GRADIENT

Again turning to what can be observed in nature, one will notice that for
unconsolidated bottoms consisting of clay and silt, the analysis of cores can
show a more or less constant wave velocity in the upper meters, whereas density

clearly increases with depth. Let us look at one possible explanation for this.

In chapter 4, we were looking at the rather unusual case of bottom consist-
ing of a mixture of gas bubbles, water and solid. We will now look at the very
common case where there are no free gas bubbles present and we can treat the
sediment as an ideal two-component mixture. The equations for the relative
density and velocity from chapter 4 can be rewritten as:

Psed/Pwater = psolid/bwator *(1-n)+n

and
1 -
asoa/awam=\/[_p_’°“ﬂ_ (1_n)+n] [_M_ (1-n)+n
Pwater Bwater

where n is the porosity.

Using Psolid/Pwater = 2.62 and Bsoiias/Bwater = 0.0455, the values of Psediment/Dwater and
Qsediment/ Qwater have been calculated. Figure 10-1 shows the relative sound velocity
and density for a two-component sediment as a function of porosity, with the
velocity exhibiting a wide minimum around a porosity of about 75 percent,

whereas the density increases linearly with decreasing porosity.

Measurements on several thousand core samples indicate that our assumptions
can be considered valid. We will frequently use this relationship between
porosity, density, and velocity, known as the Woods equation. In situ, values

for porosity wusually range from 35 percent for coarse sands to 65 percent for

silts and 85 percent for clays, as discussed in appendix C.
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Fiqure 10-1. Relation between Density/Velocity and Porosity : y

' Therefore, if we have a sediment with a porosity near 75 percent, a - Q
decrease in porosity with increasing depth would change the relative velocity
very little. However, the density would increase with depth, thereby creating

' density gradient, as seen from figure 10-2, which is representative for several

cores taken in the Alboran Abyssal Plain to the east of Gibraltar.
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" ':
The relative velocity is approximately 0.975 and we have a type of intro- ":.
"
]
mission angle reflection, in this case, with a frequency-dependent reflection :',
®
coefficient due to the clearly seen density gradient. "'Q;:;
(W]
L% 1
. )
To calculate the reflection coefficient, let us approximate the continuous :_
-
{20
density gradient with finite density steps, creating a layering system as seen
!"Y'
0‘;
in figure 10-3. N
)
3
[ '
L4
Y
N
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R
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a=1 p=1
P -
] ¥
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(L
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|
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d=WN, 6= P2~ pr >,

as p2

Figure 10-3. Approximation of Density Gradient

Using the Airy formula for the reflection coefficient from the n

expressed by the local reflection coefficients, we have:

Fa-1 + Ra « @/®
1+ -1 * Rn ° ei¢

Ra-1 =

where:

-1 is the local reflection coefficient, depending on the density and
velocity on each side of the n-1 interface,

Rn is the reflection coefficient from all the layers below interface n,
Rn-1is the reflection coefficient for all layers below interface n-1, and

@ is the two-way phase shift equal for all layers.

The formula can be used recursively but is not very convenient for

“6 gt

layer

I OO

Pt o

wave D

-

our

purpose. However, by selecting very thin layers and assuming that 1 > @y and

Rn*rr-1 €1, we can as before use the much more convenient approximation:
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Rn-1 = fn-1 + Ra ei®

which physically means that we are ignoring multiple reflections. Starting the

calculations at the lowest interface N, we get:

Rn-1 = Fa-1 + Ry - €%

R1=r1+R2-e‘°

Ro=ro+R1‘ei¢

or

Ro=Sro+ri-e®+ry-e®+ . ry-elNe
With fn = Post “Pn_ P27 P

Prer ¥ Pn - N (pn+1 + pn)

P2 - P

fo = ——————
N (p2 + p1)

Ro=Sro+r-e?®[1+ed+. . +eNle]

Applying the formula for a sum for geometrical series, we obtain for the

reflection coefficient:

e (p2 - p1) eiNo - 1
Ro=rp+ . -
N (p2 + p4) e? -1

and ¢ =2-ky-d-cosf, with k being the wavenumber and & the angle of inci-

dence equal for all the thin layers. Using Snell's Law, this reduces to:

L ,
¢=2W-ko/a1-\/1-afsm280 ‘
which is real for all angles of incidence. -:3
I
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Letting N —© and d — 0 , the density profile will approach a linear one "
and, after some calculations, we arrive at the following expression for the Wt

reflection coefficient for a layer with a density gradient: ]

U

P2 - P !

Ro = rg +— - (sin + i(1 - cos et
° 70" 90 (02 + p1) (8in o+ i( %o)) o

| YR S B 7 o2 .
with ¢o—477' 2o o \,f asi ¢ sin® 8o. O:i'

| To see how the gradient affects the reflection coefficient, we will use the g
values from figure 10-2 which gives: - ol

a1 = 0.975, p1 = 1.4 and ps = 1.5. i

Figure 10-4 shows the reflection losses for selected angles of incidence and as hy,

function of dimensionless wavelength.

85° — 0

- 11 :‘.‘
]
dB o

15 -

17 1

60°

REFLECTION LOSS

191

65° — e

dB
21 : -

r L
0.02 0.05 0.1 0.2 0.5 1.0 1.2 1.5 10—, L4

Figure 10-4. Reflection Loss in the Presence of a Density Gradient
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The curves show the usual A/4 and A/2 oscillations, but being damped with o
increasing frequency, approaching an asymptotic loss value. The reason for this !
can be understood from the fact that, for long wavelengths/low frequencies, the
gradient has little effect, whereas for shorter wavelengths/higher frequencies N
only the water-sediment interface affects the reflection coefficient. For com-
parison, figure 10-4 also shows the losses at 60° for the case with no gradient N
but with a single layer with a density of 1.4 and a half-space with a density of it

1.5, showing the smoothing effect of the density gradient. N4
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CHAPTER 11

EXAMPLES OF GENERAL LAYERING

When dealing with general multilayered bottoms, it is not possible analyti-
cally as in the past to study the behavior of the reflection coefficient as a
function of angle of incidence and frequency. Therefore, we will use the trans-~
fer matrix method as described in chapter 6 to calculate numerically the reflec-
tion losses using three different bottom models with the acoustic parameters as
given in table 11-1, with AA and AB being the attenuation of compressional and
shear waves. In Model C, the density and compressional wave velocity are

related to porosity through the Woods equation.

Table 11-1. Bottom Acoustic Constants for Three Models

AA AB
MODEL a B dB/A | dB/A p d
A 1.0 0 0 0 1.0 — Water
1.055 | 0.26 1.0 1.5 1.89 1.0 | 45% Porosity
1.13 0.40 1.5 2.5 2.05 — 35% Porosity
B 1.0 0 0 0 1.0 — Water
1.085 | 0.26 1.0 1.5 1.89 1.0 | 45% Porosity
1.13 0.40 1.5 25 2.05 1.5 | 35% Porosity
1.87 1.07 0.5 0.75 2.2 - Limestone
C 1.0 0 0 0 0 -— Water
Varying as function of porosity 1.0
113 | 040 | 15 | 25 | 205 - 35% Porosity

To give an overall image of the reflection loss as a function of angle of
incidence and frequency, the reflection loss 1isolines were plotted in the
angle of incidence-dimensionless wavenumber plane. Let us look at the results

from the individual models.
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MODELS A AND B

The reflection loss was calculated for three models, as given in table
11-1., PFor Model A, the reflection loss was also calculated for cases without
shear waves or without attenuation. The results of the computations are shown

in fiqures 11-1 to 11-4.

Sy Several significant features are noticeable. One is the system of valleys
and ridges originating at 0 degree incidence and being shifted toward higher
S frequencies with increasing angles. These low and high losses correspond
o respectively to half-wave and quarter-wave layer thicknesses. This means that

. the extremes will be determined by: d cos 8=mm/4 .

s; At angles near the critical angle, the complexity increases and one often
s& finds large losses in this region. After the critical angle in the top layer,
i‘ the losses decrease quickly and show little frequency dependence. When com-
"\

Eg paring the losses for the case with and without shear waves, one will notice
fg' that the shape of the isoloss contours is very much the same, but generally with

1 to 2 dB lower losses in the absence of shear as one would expect.

't Comparing the losses with and without attenuation shows some interesting
features. The isoloss contours get much more irregular due to the unmasked
) interference between the two types of waves. After the critical angle in the
deepest layer, the effect of the shear waves is clearly seen when the effective

thickness equals quarter-wavelengths.

MODEL C

In the section above, we looked at solid layers supporting shear waves.
From the cores taken at the SACLANTCEN, it seems that the porosity of the upper k'

N layers of the deep sea bed is usually about 70 to 80 percent. It might N
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therefore be of interest to see how a low velocity layer on top of a more
consolidated sediment will affect the reflectivity. To obtain a general picture
of the reflection loss, this has been calculated for a porosity equal to 80
percent, at which the sediment sound velocity is minimum. The resulting iso-
logss curves are shown in figure 11-5 and the usual system of ridges and valleys
are noticeable., Two marked zones with very high losses are observed near
grazing and correspond to an extension of +the quarter-wave valleys. These are
caused by the trapping of waves in the upper layer as already discussed in

chapter 9.

Figure 11-6 shows the reflection loss as a function of frequency and por-
osity for angles of incidence of 0°, 60° and 80°. The 100-percent porosity

case is included for completeness and corresponds to pure water.
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CHAPTER 12
IMPULSE RESPONSE

l."!
In the preceding chapter, we have described the bottom by its complex .::.
]
(8]
reflection coefficient R(w) for a given angle of incidence as a function of .:::g
.."
Ballr

frequency and treated it as a linear and time invariant system. Another way °
".

)
to describe such a linear system is by the impulse response in the time :‘.}r
Wl
ot
domain defined as the reflected signal for an incident delta function o) . .::::
¢
5
For the delta function, also called the Dirac pulse, there exists the Fourier '
‘;li
pair O(H) <->1 . The impulse response h(t) is therefore determined by the ::::
l‘ .Q
(N
well known Fourier integral: "y
™

1 o . P

- t

h(t) =5, ] R(w) e“ dw (12-1) N3
-~ \H' ]
s,
In the case of a single half-space as reflector, the reflection coefficient can b :
' ‘ R

be written as follows: (]
o
| ',
Ag-e® w>0 ':‘;::
."’f
= . : U
R(w) A ::c:

Ag e <0 ‘
N
o':
or, using the signum function sgn w , as: v
")
‘ o

R(¢') = Ag - €%3%9"“ = Aq (COS o + i Sin G sgn w) °

A TL
3
which inserted in equation (12-1), gives ‘
]
- 1 > =} 1 e = ._N‘
h(t) = Ac [ cos 8 fe'“‘d'u+ in f wt ’

(t) = Ac [ ° 27 J 8 sin 6o 57 _lcsgnwe dw] .
O
N
F <
From the Fourier pairs, N

2
)
6 (1) <-> 1 &

®
TR
and ::':.
w,
1/m-t<->-i-sgnw '.-‘:,.g
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. we obtain: )
. 0 ‘
Sin &o
h(t) = Ao-cos o6 (t) - Apg ——
wt .
4 ‘,
". which is shown in figure 12-1. 4
b h(t)
. R
\ :
‘ i
B i
". (%
4 .
4
ot
! 4 Ao COS 6o :'
L)
\ . e :
. Ao sin 30 M
7‘— \ q4;
t
. T T + u T r— Y o &
, m 2/m V/m V/m 2/m__3/m— ;
: ;
A H
. 4
¥
¢ .‘
' 1t
N
&
My
. I
‘. ¢
] gl'
N Figure 12-1. Impulse Response for a Half-Space Model '
L]
) If there is no damping present, & will be zero for angles of incidence -
) WV
n,
less than the critical angle; hence, the impulse response is represented by the ~J
delta pulse at zero time. Only after the critical angle will there exist a )
phase shift causing the hyperbolic term in the impulse response. by
&
! In the case of a general multilayered bottom, R(w) is so complicated that :.
the Fourier integral has to be calculated numerically. This means that it is ;
*'
necessary to truncate the integral at a frequency high enough for the remainder 'I:
) 3
to be ignored. But for W — %, there still exists a finite reflection loss, so :
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any termination of the integral will cause a serious truncation error. To avoid
this difficulty we remove from the reflection coefficient function the asympto-
tic value that corresponds to the case where the upper layer is acting as a
half-space reflector:

R(w) =R (w) +T (w),
where

T (w) — 0 for w — <.

v Thus, the impulse response can be written as:

m (R ()] , 1

mt T

| wo '
h(t) = Re [R ()] 6 (t) - fT(w) e dw
0
where Re[ ] and Im{ ] are, respectively, the real and imaginary parts. The
last integral can now be calculated by truncating at wo, such that T (w)<1.
In the case where .noc damping is present this procedure will not work, since
T (w) will kxeep oscillating even for w — o and it will be necessary to use a

proper frequency window such as discussed later in chapter 14.

If oSne {s considering the situation where the angle of incidence is suffi-
ciently small such that no critical angle will occur in a layered bottom, the
impulse response can be obtained in the following way. Using the formula for

the reflection coefficient for a two-layer model obtained as a sum of single

reflections as given in chapter 8, we have:
R ((4)) Sror +
t°1 *r2 ° t10 . e'2ik‘ d. cos 6, +
t01 *Ti2°* Tl t10 . e—4lk‘ d, cos 6. + . ’
where 2 - Ky d; - Cc0s 6, =(2d) - COS y/ay) - w 1is the phase shift in the layer.
The Fourier inversion can now be made on each term. Using the following
pairs
75
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6 (1) <-> 1
f(t - to) <-> F(w) eitw

with
f(t) <-> F(w)

the impulse response becomes:

h(t) = ror - 6(t) +

t01 .nz.t’o.d(t_m

a1
tor*fi2rg-rz2-tio-6(t-

) +

4d. cos 6,

+ ...
@

which is a sequence of delta pulses separated from each other by the travel time

2d4 - cos 61/ai,a result one would expect.

At this point it is also possible to get an idea of the influence of the
attenuation on a separate pulse by introducing the complex wavenumber

k' = k(1 -i€) . The phase shift now becomes:

e-2ik; d cos 6 = g-2ik: di cos 6 . e-2k. £dicos b =

e—i(2d| cos G/avw . e“(2d| cos 8y - /ay) W

The Fourier transform is then carried out by the use of the pairs

f(t) <-> F(w)

FHY<->2: 7m-f(-w) -

and
eBt <> 28/(B% + w?)

resulting in, for example for the second pulse, the following form:

d1 cos 61 e/a
m- [4 (dy cos b - 6/0'1)2 + (t - 2dy cos 01/(11)2]

tor * riz2 - tio -
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In this case it is not a delta pulse, but a smaller, "Gaussian-looking"
pulse that is obtained; thus, increased attenuation will decrease the peak
amplitude but widen the pulse. Had the attenuation in the water been taken into
account, the reflection from the first interface would not have been a perfect

delta pulse but a finite pulse like the reflection from the second interface.

To illustrate the technique, the impulse response has been calculated for
the same three-layer model (B), used in chapter 11, for 0°, 40°, 60° and 80°

angles of incidence. The results are shown in figqures 12-2 to 12-5.

Looking, for example, at figure 12-3, we notice the following reflections:
first, the delta pulse and the hyperbolic term from the surface, then the
Gaussian-looking pulse from the second interface. Because the critical angle
for the half-space is 32.3°, the reflection from the third interface will
involve phase shift, which gives the pulse from this layer an inverted 1look.
The next pulse to be seen on the figure occurs at t =~ 45 and is caused by the
reflection of the previous pulse from the first and second interfaces before
leaving this layer through the first interface. The pulse will have the same
polarity as the incident because of an additional reflection from the first
interface separating a higher impedance from a lower impedance. The fol-
lowing pulses are difficult to trace exactly due to the repeated influence on

the phase shift.

The impulse response is a very useful way of describing the reflectivity
and often is much easier to comprehend than the complex reflection coefficient

when trying to deduct the characteristics of the bottom layering.
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CHAPTER 13

PERIODIC LAYERS

Analysis of hundreds of sediment cores taken from both the Atlantic and the
Mediterranean shows that two distinct types of deep sea sediment are found. One
consists of rather homogeneous clay, which has been deposited slowly and con-~
tinuously {so-called pelagic sediments). The other consists of layers of
clay mixed with sand or silt deposited suddenly by turbidity currents. Tur-
bidity sedimentation is a frequent type in the Mediterranean and in the Atlan-~
tic. An inspection of the core sections very often indicates a clearly marked
systematic change between clay and sand, giving certain parts of the core a
periodic structure. It is of interest to study these conditions in more
detail, since we shall see that periodic layers of quarter-wave thickness
are one of the few cases where very high reflectivity exists over a finite

frequency band.

Let us start by rewriting the transfer matrix A for liquid layers to a form

more convenient for our purpose. From chapter 8, we have:

w/c] = {cos Pm iam (om €)' sin Pm| |W/C

o i pm €2 am' sin Pm cos Pm o
m m -1

which by the use of the values for c and a can be written as:

w] = [cos Pm i—Zl—sin P W OF Sm = Am * Sm-1

m

ag i Zm SiN P cos P o
m m m m m_1

Pm  Am
COS Hm
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being the impedance for the m layer. It is easy to prove that the determinant
of this matrix is equal to unity, a fact due to the assumption of no attenuation

in the medium.

By relating the boundary condition vector for the lower half-space inter-
face and the layer-water interface through the new A matrices and by intro-
ducing Z, = -gn/Wn and Zo = "UO/V.VO as the impedances for the lower half-space

and the total layering respectively, we get after some calculations:

_ (<821 + @22 Zn) - (@11 - @12 2Z0) 20
(-a21 + @22 Za) + (@11 ~ @12 Zn) 20

(13-1)

which expresses the reflection coefficient R by the half-space and water imped-
ances and by the coefficients 4 for the layering (excluding half-space) product

matrix A.

Consider now a bottom built up of a succession of homogeneous sand and clay
layers with markedly different acoustic parameters causing an alternation
between higher and lower impedances. There will therefore be two types of A
matrices, A; and A2, one corresponding to sand a;d one to clay. The product

matrix for such a double layer is:

= . . . , 1 .
m= |cos P,cos Pz - —?— sin P, sin P2 i( 21 cos Py sin Py + ——— cos P, sin Py)
1 2 1
i(Z, cos Pz sin Py + Z; cos P, sin Pa) cos Py cos P; -—%’— sin P, sin P;
2

which is the transfer matrix for a single period (a double 1layer) in the

layering.

The transfer matrix for N equal double layers is then:

a=m:- . m. N times

3|
3
3l
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Since A is unity, the elements in a can be expressed explicitly by the use of

Chebyshev polynomials in the following way:

a1 = M1y Un-1 (X) = Un-2 (X)
a12 = My2 Un-1 (X)
az1 = M2y Un-1 (X)

a22 = Ma2 Un-2 (X) = Un-2 (X),

where Un(X) 1is the Chebyshev polynomial of second kind and N™ degree. The

argument x is half of W's trace and equal to

Zy Z; . .
> — P Ps.
Z, Z. ) sin Py sin P2

X =cos Pycos P,- "% (

The first polynomials are U(x) =1, U(X) =2x , and the higher orders can be

computed from the recurrence formula:

Un (X) = 2X Un-1 (X) = Un-2 (X)

In the case where the acoustic thickness of the two layers are identical

(which corresponds to equal phase shifts),

P, = P, = P and m reduces to:
= 2 Zz .2 . 1 1 .
m = cos‘ P - —= P — cos Psin P
Z. sin i( 2 Z ) Si
i(Zy + Z2) cos P sin P cos® P —% sin? P
2

when P = /2 (which is the case when the thickness of the simple layer equals a

quarter-wavelength), m reduces further to the simple and symmetrical form:

Zy

3l
1

0 -
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0
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(Zz

The reflection coefficient is then, according to equation (13-1):

i‘::’ 1-( gz % éo

L2 1 n

R R= 2 Z

0y £2 N _£&£0

) VT2 :

This is valid only at a frequency corresponding to the quarter-wave criterion in

the original layers.

The analytical evaluation of R when the phase shift P is not equal to /2

& leads to rather complicated expressions. The following cases have therefore

been computed numerically and the results given in graphical form using

Osang = 1.05, Qclay = 0.95, Dsand = 1.8 and Peiay = 14,

Figure 13-1 shows the vertical losses for N=1,2 3, 4,6,9 and 0<P<mw with

P1=P2=p.

To avoid confusion between the different curves, only the high reflection

w zone has been plotted at the highest values of N. We find a very characteris-

tic, almost frequency-independent, low loss around P = 77/2. Outside this region

losses are much higher and oscillate, with the number of oscillations <

the

increasing with N.

When using c-e condition of periodicity, it can be shown that when N — >,

one can find a finite interval around P = 77/2 with zero loss and that the width

high-reflectance is twice the arcsine of the local reflection coeffi-

of

this

- cient [ =(Zy - 22)/(21 + Z2) between two single layers.
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Figure 13-1. Reflection Loss in dB as a Function of Phase Shift

for Different Numbers of Layers

The influence on the angle of incidence is investiéated for the case N = 3
and with the single layers matched in phase for vertical incidence. The results
are given in figure 13-2. Apart from an expected shift of the high-reflectance

zone towards higher frequencies, we notice that both the width of the zone and

the reflectivity increase with an increasing angle of incidence.
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Fiqure 13-2. Reflection Loss in dB for N = 3 as a Function of Phase Shift

for Different Angles of Incidence

Until now we have only considered single layers of equal acoustic thickness
(same phase shift in both layers), a criterion that quite often is not exactly
met in nature. We shall now study the effect of three double layers that are
similar but not exactly matched. Figure 13-3 shows the minimum loss for the
first high- reflectance zone as a function of the ratio between acoustical

thicknesses.
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FPigure 13-3. Minimum Reflection Loss in dB for N = 3 as a Function of

Different Ratios of Acoustic Thickness (Thickness of Double Layer Equal to A/2)
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From the figure we notice a very important factor: even in the case of

unmatched layers, high-reflectance zones exist when the thickness of the total ,:._
t.

-\\~

double layer 1is equal to a half-wavelength. We can, therefore, perhaps con- }:‘
T
clude that, where a periodicity is found in the sub-bottom layering, low- i?»

loss frequency bands should be found by, for example, the use of broadband sig-

_E!o.
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nals such at those from explosive sources. \ “ﬁ
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B

One of the several areas where SACLANTCEN has made bottom reflectivity

measurements is in the Tyrrhenian Abyssal Plain southwest of Naples. Figure $f )
13-4 shows the reflection 1losses as a function of frequency and angle of :"
\J

A

87 ]

&

\’1

PR - - .- *, .
O R S N O S R S I A S N
BN T WY T NSO S NS NI

' Y
B,




BB PRY L R IY P AT R MY AL T < Y Uttt At W W et
R A A ndiaadas T D A T A Lo il T AN AT TN Do 8 S Tt B S M N

BT T T T R N ST DS P S PO YO S YR PR R O A A

TD 8129

incidence. The 1losses are strongly oscillating except within a very marked
band approximately 300 Hz wide where the losses are almost constant and in the
order of 2 to 3 dB. The center frequency is about 1500 Hz at 18.3° angle
of incidence. Correcting this to vertical incidence by cos 18.3°, we get f =

1430 Hz.

621 7’-I‘Degreesl

60.3 - ’rl', " : ‘\ \ \ / \F /_\\‘ A V/ ‘v\ //_V
58'3+“§/;/Q'w ~'/ ‘/“0 A N T
57. (! \ | ‘ .

ol Incidence

Angle

:f.
198+ MgV ¥
18.31-;?% '

W

Xk

Figure 13-4. Reflection Losses as a Function of Frequency

for Different Angles of Incidence

Thus, it 1looks very much as if we were dealing with a system of periodic
layers and an inspection of seven bottom cores taken within the reflecting area
shows a marked layering. Analyzing the density, we obtain an average wavelength

corresponding to a double layer on the order on 54 cm with a standard deviation
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of 10 cm. We should, therefore, expect a high-reflectance zone corresponding to N
a wavelength of 108 cm = 54 -2, which again corresponds to a frequency f = ha'h

1560/108 = 1450 Hz, an excellent agreement. »

Such periodic structures play an important role in other fields of wave
propagation. One example is the use of different coatings of optical devices, )
either to reduce or enhance reflectivity; another, the Bragg reflections of X-

3
rays used in crystallographic research. ‘4:
1
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CHAPTER 14 :‘,':Eg
o .:
MEASUREMENT OF BOTTOM REFLECTIVITY "::'
b8’
o
N
The experimental determination of the reflection coefficient is not always 5%;
I"
(\
a simple matter and many different techniques have been applied with varying $m
!
'.“(
results. The problem divides itself into two parts: one concerning the experi- ;L'
i'
mental set-up and the other concerning the analysis of the experimental data. t )
3?!{’
hitgd
In the past some of the techniques used have been standing spherical wave lﬂﬁ
®
interference methods or correlation techniques with random noise. However, they .
hY
N
b3
are not really practical in the true ocean with water depths up to several #g
)
'
thousands of meters. The technique we will discuss in detail uses explosive Ly
o
sources and digital processing. .E
b
o
. 0
EXPERIMENTAL DETERMINATION OF THE REFLECTION COEFFICIENT l"o}
e
To measure the reflection coefficient over a wide frequency band and for :&
!,
angles of incidence from vertical to close to grazing, the following technique ¢$
"
has been used by the SACLANTCEN during the past 20 years. '
®
bt
A receiving ship suspends a 750-meter vertical hydrophone string, while a fﬁ
L,
. ‘|‘.
source ship moves on a predetermined fixed course, launching explosive charges ‘#@
X
(500-1000 g TNT) set to explode at a depth of about 500 m. The launching ®
¥
schedule is arranged so that bottom grazing angles between 5° and close to 90° N
]
]
are covered. o
]
The direct and reflected acoustic signals are received by the hydrophones ‘I¢
3!
in the string and recorded, in digital form, along with a radio pulse that is ; "
transmitted from the source ship at the moment of reception of the direct N
L)
acoustic pulse. Acoustic travel times are computed from the radio signal, and W
' [N
.
[
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in connection with radar observations, used to determine the trial geometry.

Figqure 14-1 shows the experimental set-up.

RADIO PULSE

TP777777777 777777777 777777 7777777777777 777777 77 77, Pl /77,

Figure 14-1. Experimental Set-Up

For each station occupied by the receiving ship, the following supporting
environmental measurements are made:

a. bathymetry along source ship track

b. sound speed profiles

cC. core samples

d. bottom stereo photographs.
REFLECTION-IOSS CALCULATIONS

Since the reflection coefficient at a layered bottom is frequency depen-
dent, simple and direct calculations cannot be made and one has to use Fourier
analysis techniques. Let d(t) and r(t) be the incident and reflected pulse

close to the bottom, as seen in figure 14-2.
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GRAZING ANGLE ¢

v
SIS S S

Figure 14-2. Ray Geometry

The frequency-dependent reflection coefficient H(w) is then obtained by

deconvolving the reflected spectrum by the incident spectrum as:

R
) B

where R and D are the Fourier transforms of r(t) and d(t), as

R(w) = [r(t) e"«t dt,
D(w) = [d(t) et dt.

The reflection loss is then defined as L =-20logiH! dB. The impulse response
h(t) is then determined as discussed previously as the inverse Fourier transform
of H(w),

h(t) = —21; [ H(w) et dw.

In the experiment, the.direct and reflected pulses were not measured near
the bottom but instead measured in the water column after they had both been

attenuated along their propagation paths. The attenuation is the combined
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spreading loss and the frequency-dependent absorption and is determined by ray

tracing based on the measured sound-speed profiles.

Nominating the difference transmission loss in the water for a perfect

reflecting boundary as

A = TLaer - TLoirect,

the bottom loss is BL = -20 log

R'(w)
—_——A ,
@) (w)

D'(w
where R’'(w) and D'(w) correspond to the Fourier transforms of the reflected
and direct path of the received signal, for which an example is given in figqure
14-3, along with their respective amplitude spectra. By dividing the Fourier
transform of the reflected signal by the Fourier transform of the direct signal,
the uncorrected reflection 1loss is obtained as shown on figure 14-4, The
impulse response is then calculated from the lowpass filtered deconvolved sig-

nal. The result is also shown on figure 14-4 with the noisy nonfiltered impulse

response.

Using the same hydrophones and recording channels for both the direct and
reflected signals makes this technique self-calibrating, and the use of several
hydrophones at different depths gives the capability to separate as many as
possible of the received pulses at low grazing angles, down to a few degrees.
Benceforth, we will use the grazing angle instead of the angle of incidence when

presenting results, a practice common in ASW.

Figure 14-5 shows an example of the measured frequency-dependent losses at
low and high grazing angles on a flat and smooth bottom. At high grazing
angles, one notices the interference pattern caused by reflections from the

different layers. Also, it should be noted that the lowest losses occur at
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higher frequencies because the reflections from shallow and thin layers are the
most dominant. At low grazing angles, the picture changes to an almost perfect
reflection of the lowest frequencies, due to one or several critical angles for

deeper layers, whereas the high frequency part exhibits large losses due to an

intromission angle in the shallower sediments.

The step functions superimposed on the loss curves are the 1/3-octave band

levels obtained by mathematical filtering.

SPECIFIC SEA FLOOR ACOUSTIC RUNS

To illustrate the technique, we will take a lock at three different cases
from the Mediterranean as shown in figure 14-6. Reflections from a bottom con-
sisting mainly of turbidity sediments, from a bottom consisting mainly of soft
pelagic sediments, and from a rough bottom in a ridge area. The results are

presented in three types of displays:

a. The impulse response with a 500-5000 Hz bandwidth for different grazing

angles, using 80 and 20 ms time axes.

The reflection 1losses as isoloss contours in a frequency-angle plane

calculated in 1/3-octave bands.

The reflection 1losses as a function of grazing angle calculated in

octave bands.
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Figure 14-6. Positions of Acoustic Runs
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Run 1. Southeastern Balearic Abyssal Plain

-
L

The Balearic Abyssal Plain is the most extensive abyssal plain in the

Mediterranean. The station where the bottom reflectivity was measured is

Pl PR

situated off eastern Algeria, on the southeastern part of this abyssal plain.
Along the acoustic run, the water depth varied from 2630 to 2615 m with a flat
sea floor. A core was taken at position 1 indicated in figure 14-6. The sedi-
ments consisted of fine-grained clays and carbonates interspersed with silt and

sand deposits transported by turbidity currents, probably originated by the
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steep Algerian continental slope. These turbidity layers are also very evident

from the impulse responses shown on figure 14-7.

The reflection losses, as seen in fiqures 14-8 and 14-9, show a clear
critical angle situation for low frequencies, as we would expect from the exis-
tence of the high sound-speed sand layer observed in the core. No evidence is
seen of high loss due to an intromission angle. Only the first reflection from
the water/sediment interface indicates an intromission angle seen from the 180°
phase shift of the pulse at 13.5° grazing angle. This value corresponds to a
sound-speed contrast of 0.98 and a density contrast of 1.4; such values are
typical of unconsolidated sediments and were also observed during the subse-

quent runs over a flat bottom.

Very marked reflections occur from layers A, B and C, situated at depths of
Sm 12.5 m and 34 m. As the grazing angle diminishes, the pulse is critically
reflected from these layers, forming high-amplitude phase~distorted pulses that
dominate the impulse response at small angles. Note also a possible deep-
refracted arrival showing at 33° grazing caused by the velocity gradient in the

sub~bottom.

Run 2. Pantelleria Basin

This acoustic run was conducted in the Pantelleria Basin, situated

southeast of the island of Pantelleria. The basin is approximately 90 km long

and 30 km wide with a water depth of about 1300 m. A core (about 7 meters) was
taken in the area of position 2 as shown in figure 14-6. It consisted of soft O
unconsolidated sediments with three layers of silt/sand-type turbidity Hﬂ

sequences. °
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The impulse response seen in figure 14-10 clearly shows that we are dealing .a
O)
! '.“
with a bottom consisting mainly of soft, unconsolidated sediments with very few ht
[
hard layers. Only the layer A, which correspond to a depth of about 30 m, is ff;
A
OO
4
apparently hard enough to have a critical angle. 'ﬂ
e
M)
This is also seen from the loss plots on figures 14-11 and 14-12, where a zr¢
W
. 40
O
critical angle of about 10° is seen for frequencies of 100 to 200 Hz and a ah
O]
(A
O
\ clearly marked intromission angle occurs for the highest frequencies, with 'ﬁ
losses of up to more than 20 dB. This means that this area is not suitable for ;J
o
the use of hull-mounted bottom-bounce sonars. }fﬂ
! '0.*"
\)
Run 3. Mediterranean Ridge ‘“
;iﬁ
The Mediterranean Ridge is the dominant physiographic feature of the east- f;ﬁ
'
\
'
ern Mediterranean. It extends from the Italian continental rise between Crete &}
and Libya to Cyprus and is bordered by deep basins to the north and south. 1Its ;h}
W
o
length is approximately 1800 km and its width varies from 75 to 200 km. The ‘da
l’.
water depth at the run is approximately 2300 m, and the topography in general is “J
o
very rough with many hills and depressions reaching about 10 to 50 m in height ;{.
<)
M
and 1 km or more in wavelength. \%
R
s
This type of structure gives overlapping, hyperbola-type bottom rn..files of ®
- FAsy
the sea floor on the normal echo-sounding recordings. These are also clearly 7'$
A
observable from the impulse response, shown in figure 14-13, The pulses '}
obtained were of the chaotic type because the Fresnel (reflecting) zone moves
0 'a
o
along the bottom showing marked focusing and defocusing effects for all frequen- ﬂt
cies. This is also noticeable from the loss contours, shown in figure 14-~14, :as
where a strong focusing is observed for grazing angles around 25°. @
l'\'
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Isoloss Contours (dB) versus Grazing Angle and Frequency
for Station 3

Figure 14-14.
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SUMMARY

Summarizing from the above and other measurements, we can conclude that
areas with high-porosity, unconsclidated sediments (run 2) in general have an
intromission angle at high frequencies and a critical angle at low frequencies,
whereas areas with turbidity sediments (run 1) show a critical angle situation
for all used frequencies. Even though the bottom material for run 3 creates a
critical angle situation, the roughness of the bottom plays the major role in
the reflectivity characteristics, showing marked focusing and defocusing effects

for all frequencies.

To give an idea of how the reflection losses vary over an area such as the
Mediterranean Sea, the results from 30 acoustic runs are shown in figure 14-16
and 14-17, again clearly showing a marked critical angle around a 20° grazing
angle. For the higher frequencies, the situation is more mixed with some of the
areas showing an intromission angle case and others--even for these frequencies--~

showing a critical angle.

The losses for all runs are seen on figure 14-18 which represents some 6000
data points. From this, one will notice that the bottom in the Mediterranean
basins is a rather good reflector with losses generally less than 10 dB, even

for vertical incidence.
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CHAPTER 15 {

DATA ANALYSIS METHODS 3

In the previous chapter, we studied techniques to measure the reflection :

coefficient as a function of frequency for selected angles of incidence in a g

general way. Unfortunately, this type of representation is often too bulky for ﬁ

. certain purposes and one searches for socmething as an answer to the question: ¥

what is the reflection coefficient for this bottom within something 1like 20° é

' from grazing? k

3

Several analysis and reporting techniques exist. We will look more in x

4

detail for a comparison between the following categories, which have been listed ﬁ
in a rather arbitrary manner:

:

a) Complete transfer function ?

{

b) Narrowband losses, long CW pulses "

c) Total energy, bandpass filtered E

{

d) Peak amplitude, broadband 3

,

e) Peak amplitude, bandpass filtered a

f) Peak amplitude, bandpass filtered and time averaged ("sonar simulator"). %

i

To choose an exact and unbiased example by which to compare the results of 5‘

using the different methods of analysis, a large number of deep sea cores taken ;

4

in the ©North Atlantic were inspected in order to choose one whose structure ?

seemed to be characteristic in layering, sound velocity and density. To compute ‘

the reflection coefficient, the relative sound velocity and density curves were ?

approximated by step functions that converted the bottom into a 19-layer model, g

The results are shown in figqure 15-1, which also shows the original measurement f{

of sound velocity in the sediment. "
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:’: Figure 15-1. Relative Sound Velocity and Relative Density Profiles
e
G
3: (Indices s and w refer to Sediment and Water)
B
'.‘5' COMPLETE TRANSFER FPUNCTION
",’l
B
Qx: The calculations for the model are done using the previously described
L)
BN
transfer matrix technique, An example of how the reflection loss and the phase "
DO - X
r
i:: shift appear for a 30° grazing angle is given in figure 15-2. As expected and
)
W
‘.:' observed from experimental data, the reflection coefficient is a strongly oscil-
X :
(X
J lating function with up to about 30 dB between maximum and minimum, whereas the
'*L: phase shift behaves in a less complicated way.
»
fa
To represent the reflection loss as a function of both frequency and angle,
::" the contours for equal loss have been plotted in figure 15-3. This type of )
v
!'g‘ :
O
0
v
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display represents the full information on reflection losses, corresponding to
specular reflections and pure frequencies.
From figure 15-3, it is very clear that it is meaningless to characterize

reflection coefficient by a single number without at least specifying fre-

the

quency and angle interval.

CmECemmrsa

10d8 — —15d8 20dB —25dB

Reflection Loss

Figure 15-3. Reflection Loss Contours

k
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NARROWBAND METHOD

Bottom-bounce sonars often use long CW pulses, corresponding to a very
narrow frequency band. The bottom losses are easily obtained from figure 15-3
by cuts in the surface for constant frequency. Figure 15-4 shows the losses for

a 3.5 kHz, 500 ms long, CW pulse.

Grazing Angle
Lo 2 80° 70" 60° 50° £ ko 20° 10° o

L] T r— — T T T e

—~——15kHz 500ms CW
-~—--315kHz 45'effective beam width

Loss

Retlection

251 4

Figqure 15-4. 3.5 kHz Narrowband Reflection Losses

Large fluctuations can be noticed, especially near the marked intromission

angle caused by the presence of several low velocity sediment layers.

An actual sonar insonifies a finite area on the bottom, but for a flat,
smooth bottom the active reflecting area is determined approximately by the size
of the first Fresnel zone. This and the movement of the transducer means we have
to average the losses over a finite angle interval. 1In figure 15-4, the reflec-
tion 1losses for a 4.5° effective beamwidth are alsc drawn. Note that, even

after smcothing, large variations in the losses can be observed.
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TOTAL ENERGY METHOD

One of the most frequently used analysis methods is to measure reflected
energy in different band pass filters--normally octave or 1l/3-octave filters.
The computation for the losses to be found by this method is rather simple since
we only have to integrate the transfer function in the frequency domain using

the appropriate filter window.

Pigure 15-5 shows the results when using a 3.5 kHz center frequency for
computing the losses for octave and 1/3-octave filters. Note how the octave
filtering now almost masks the intromission angle, whereas this feature is
clearly recognizable for the l/3-octave filter. As a reference, the pure 3.5

kHz losses are also shown by a dotted line.

Grazing Angle

090' 80" 70° 40" 50° 40* 30 20° 10° o
5r' . 4
10 ,"\‘ AN ! ; : A " ': .
w — : N
%3 i} Y R N
o N " : "
- ! . / ; :
4 \ ! Vo R
s v B ! vy I YD
3¢ v A L w
2 ! ' ; ; Lo
® . : P !
[+ 4 . ' ! e :
wf i ¥ 15 kHz 1
v - o
v n —<—Octave Filter
u u ——13 Octave Filter
Total Ener,gy e scoms CW Puise
a5 1
dB

Figure 15-5. Octave and 1/3-Octave Reflection Losses

(3.5 kHz Center Frequency)
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PEAK AMPLITUDE METHODS

One popular method to calculate the reflection coefficient has been to use
the ratio between the peak amplitude of the reflected and incident pulses. To
investigate the effect of this procedure, we will use the impulse response
obtained from the layering in figure 15-1. Figure 15-6 shows the responses
calculated for a sequence of angles. Also shown is the vertical layer impedance
scaled to travel time. Note the 180° phase shift for the first reflection at an
angle near 19° due to the intromission angle for the upper layer. The compres-
sion in time with decreasing grazing angle due to the change in the vertical

wavenumber is also clearly shown.

If we are dealing with a single reflector, it would be correct to measure
the reflection coefficient from the broadband peak values due to the frequency
independence. The broadband losses are seen in figure 15-7, where the largest

peak has been used.

Grazing Angle
60° so* 4«0

T T T

Reflection Loss

= S kHz

-——— Broad Band

Figure 15-7. Peak Amplitude Reflection Losses
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Usually, however, as in our case, the reflection coefficient is freqqency-
dependent and filtered peak values are used for the loss computations. Figure
15-8 displays the bandpass-filtered impulse responses using a Gaussian 1/3-
octave filter centered around 3.5 kHz. The reflection loss is computed from the

peak values.

The result has been added to figure 15-7. Contrary to the broadband data,
the filtered data again show the intromission angle and, by a comparison between
these data and the energy data from figure 15-5, we see that the peak amplitude

method, as expected, usually yields much higher losses.

SONAR SIMULATOR METHOD

Some sonars process their data by using reflected energy averaged over a

certain time window. For this reason, 1losses are determined in a similar way
using a so-called sonar simulator, an analog device consisting of a bandpass
filter, a half-wave rectifier and a lowpass filter. Losses thus obtained can be
computed from the impulse response, but due to the nonlinear characteristics of

the rectifier, the numerical computation has been done in several steps.

For the computations, Gaussian filters were used with 1/3-octave bandwidths
centered around 3.5 kHz and a time constant of 7 ms to 8 ms. The result |is
shown in fiqure 15-9, which for comparison also contains the results from the

other applied methods. From this figure, we can conclude that, excert for a

small angle interval, the loss curves obtained in different ways show consider-

®
able divergence, in some cases more than 10 dB. In this particular example, the f }
'.‘
methods wusing averaged and total energy yield almost identical results at h&%
0
M
IR
grazing angles of importance for bottom-bounce sonar applications. However, ;‘[
AU
when deeper interfaces are the important reflectors, one might expect differ- $$$
XN
(i
ences in results between the two methods. ‘t:::f
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Figure 15-9. Sonar Simulator Reflection Losses

From the above, we can conclude that only the complete transfer function
gives the correct solution for both short and long pulses. However, for practi-
cal purposes, the use of total energy filtered in 1/3-octave bands seems to be a
good compromise between ease of computation and the reporting of a reasonable

amount of resulting data.
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CHAPTER 16

PREDICTION OF REFLECTIVITY

We have looked at the theory and the measurement of bottom reflectivity:
however, our key objective is to establish to what extent the bottom reflectiv-
ity can be predicted from knowledge of the acoustical parameters of the bottom.

. For this purpose, a well controlled experiment was performed in the Naples

Abyssal Plain in the Tyrrhenian Sea at the position shown in figure 16-1.

]
42}
4l NAPLES
-]
40t
TYRHENIAN

R Abyssal plain
39
38} ° Y

Gj w7 13 4 15 E

Figure 16-1. Position of Tyrrhenian Abyssal Plain

At this location, the water depth is 3600 m and the bottom consists of a

large number of continuous clay and sand layers deposited by turbidity currents,

thereby serving as a model for a multilayered deep sea bottom.
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The measurements were made using the technique described in chapger 14
except that the receiving hydrophone was kept suspended 150 m above the bottom
in order for the layering to be as constant as possible over the isonified part
of the bottom. The explosive charges consisted of 500 g TNT with a depth

setting of 550 m which creates a bubble pulse period of 10 ms.

§g Figure 16-2 gives a detailed display of the first 27 ms of both the direct -
23 and reflected pulses, showing the characteristic compression of the signals as
1 the angle of incidence changes from vertical incidence to grazing. Note also )
?? the intromission angle at about 77° for the reflection from the water interface.
This situation was dealt with in detail in chapter 4 and the reflection losses
illustrated in figure 4-2.
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An inspection of the signals closest to vertical incidence showed that the

major part of the reflection happened within the first 55 ms, and this value was

R A !

therefore used for the truncation of the signals.

Figures 16-3 and 16-4 show examples of the reflection loss and phase shift

N N o

for 24.4° and 73.9° angles of incidence in the frequency interval 20 Hz ~ 5000

- Hz. As predicted from the theoretical calculations, the loss is a strongly 5
- ¢
K oscillating function with up to 30 dB between the maximum and minimum loss. i
- ?
: \
! b
‘
’ i
¥
:
; '
;'
Y]
o
5

30/ 'dB Loss
’ h
™
4
Figure 16-3. Reflection Loss and Phase Shift for 24.4° R
¢
The phase shift on the other hand, shows a rather linear frequency depen- J
N
dence, 1indicating a time delay probably due to reflections from a major reflec- N

tor. At the higher angles, there is a noticeable smoothing of the loss curve due

to the shallower penetration.
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Figure 16~4. Reflection Loss and Phase Shift for 73.9° W,

Figure 16-5, which shows the losses for a 62° angle of incidence, with
respectively 31 ms and 95 ms integration times illustrates the effect of signal et
length on the shape of the loss curve. As expected, the curve corresponding to (N
95 ms gives less loss for the lower frequencies and also shows faster oscilla- (]

tions due to the greater effective layer thickness. s

Although the picture looks confused, the losses are found to behave in a . S\
very systematic way if the angle is taken into consideration. Figure 16-6 W
displays the losses at different angles of incidence as a function of frequency. i
We see that the maxima and minima are not randomly distributed but follow a »
well defined trend with the expected shift toward higher frequencies with an Wy

increasing angle of incidence. 2ty
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Figqure 16-5. Effect of Integration Length on Shape of Loss Curves for 62°

For a better absolute determination of the losses as a function of fre-
quency and angle, the data have been used to construct a map (shown in figure
16-7) giving the reflectivity as isoloss contours for 5 4B, 110 dB, 15 4B and 20
dB. This picture clearly shows that the reflectivity cannot be described by a
single parameter without the specification of angle and frequency. A strongly
reflecting region is found around 18° incidence and 1500 Hz, with minimum losses
of about only 2 dB, and is caused by periodic layering, a subject studied in

detail in chapter 13.

The impulse response being the inverse Fourier transform of the complex
reflection coefficient has been calculated using a Gaussian filter in order to
avoid artificial overshoots and the result is seen in figqure 16-8. One will
notice a strong reflection occurring for 18° at 14 ms which for vertical inci-

dence is equal to a depth of approximately 10 m, in fact at the depth where most

of the bottom cores taken stopped confirming the presence of a hard layer.
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Figure 16-7. Reflection Loss Contours in the Angle §requency Plane
Black Contours: 5 dB, Green Contours: 10 dB,
Red Contours: 15 dB, Black Arcas: over 20 dB

139/140
Reverse Blank

BRMUK] g 7 AN - e ’ - "
R e N SO OO I X Ko XA OO DU OO JE R XR e X UMUK S M MO XL IO N e XY 9«Aa.a.dhf.£%£%ﬁh

-

N
R AN

L

-
-

L




Bottom Reflections

70° 1

b

.%Nw""

o4
i

60

RS

—————

’ﬂ_‘ﬂ “,
R
N P

EER NG
b

50°

40°

Angles of Incidence

20°

10° '
10 20 .,
Time ms

Figure 16-8.

So at this stage we have a pretty good description of the

tivity. Let

echo soundings.

A total of six cores were taken along the isonified area and an

of them indicates that the layers are sloping down toward the west

four characteristic depths, A,

. . ; RV ) ,
RGO RN ’n ‘. 0‘:,_5’1._%’»2!‘! SN DO R n_\'..";J’.J",[..j...\‘..l‘q,l.n,l'.,l’g,l‘a.l.; l‘p.l‘., _.,l‘g. .g %,“Q,l‘.,!k.ﬁ‘.._‘

Impulse Response for Different Angles of Incidence

bottom

us now look at the actual bottom layering obtained from cores and

B, C and D, were chosen to correspond to marked

L)

9,34,

inspection

therefore,

reflec~
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changes in the layering. The depths are indicated in figure 16-9, which gives

the acoustic parameters for the core taken only 1000 m from the reflecting area.

804 1.2+

porosity 7,

704

:

g

1020+

%

g

relative sound veloCily

o

§
>
oy
@)
O

[k
]
8
IS
3
o
8
3
81
[a)
3

Figure 16-9. Core Parameters

Using these four characteristics from the six close cores, a multiple

regression analysis was used to correct the layer depths to obtain the depths at

e

. .
-

the center of the isonified area and the geoacoustical model, also indicated on

figure 16-9. The results, corrected for the sloping of the layers and the esti-

Py

mated values of shear wave velocity and attenuation, are given in table 16-1.
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Table 16-1. Bottom Acoustic Constants for a 35-Layer Model

THICKNESS

AA AB RHO

ALPHA BETA

1.00

1.000

.980 .05 .1 .1 1.39 .15 Ny
.980 .05 .1 .1 1.47 .21 X
.980 .05 .1 .1 1.40 .21 0
1.000 .10 .2 .2 1.53 .21 .
.980 .05 .1 .1 1.30 2.75 _
. .980 .08 .1 1 1.40 .21 ":3’
1.005 .10 .2 .2 1.40 .21 -
1.020 .10 .3 .3 1.40 .16 ‘v::
1.020 .10 .3 .3 1.35 .16 e
1.050 .15 .5 .5 1.70 .22 (XN
.990 .05 .1 1 1.35 .16 -
1.030 .10 .3 .3 1.66 .16 o
.990 .05 .1 .1 1.34 .05 N
1.010 .10 .2 .2 1.43 .16 s
.980 .05 .1 .1 1.48 .16 ot
.980 .05 .1 .1 1.28 .21 et
.990 .05 .1 .1 1.36 .22 o
1.000 .05 .1 .1 1.40 .10 .
.990 .05 .1 .1 1.40 .16
.980 .05 .1 .1 1.43 1.38
.980 .05 1 .1 1.50 .15
1.040 .15 .3 .3 1.67 .22
.980 .05 .1 1 1.35 .16
.980 .05 1 1 1.48 .17
.980 .05 .1 .1 1.30 .16
1.035 .10 .3 .3 1.40 .16
.980 .05 .1 5 1.35 11
1.020 .10 .3 .3 1.52 .22
.980 .05 .1 .1 1.44 .22
.980 .05 .1 .1 1.48 .50
1.035 .15 .3 .3 1.75 .11
.990 .10 .1 .1 1.42 .16
1.040 .20 .3 .3 1.55 .11
.980 .10 .1 .1 1.46 .28
.980 .10 1 .1 1.40

Based on the parameters for this model, computations are made to yield both

18°,

the reflection loss and impulse response for angles of incidence of 0°,

36°, 54°, and 72°, using the techniques discussed in previous chapters. The nih

results are shown on figures 16-10 and 16-11.

We see that the two reflection loss curves are very similar except for the N

lack of the high frequency components and higher losses (about 2 4B - 3 d4dB) for )
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the theoretical curve, due to the limited depth for which the computations are
made. Also the characteristic low-loss intervals can easily be followed over

the angles.

PREDICTED MEASURED

Bp——

Figure 16-10. Theoretical and Experiméntal Losses

The theoretical impulse responses are computed using a Gaussian filter to
enable a comparison with the experimental data. Within the first part of the
signal (where we are representing the bottom with our model), we see that, con-
sidering the complicated sub-bottom structure, there is a good agreement between
the two groups of curves, both with respect to time and amplitude and over all
angles. Some peaks differ in magnitude, which is not surprising, considering
that the velocity had to be estimated for some parts of the sand lavers where

the velocity is very difficult to measure.
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Oonly for
first pulse. An inspection of the core data shows that

a change in density a few centimeters below the bottom,

seem to correlate with either the velocity function or the layering.

right portion

this change. One now observes a better agreement betwe

angles of incidence.
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Therefore, we can conclude that a comparison between the measured losses b\
and impulse responses and the similar quantities computed from a 35-layer model
based on actual core data shows good agreement over different angles of inci- it

dence with respect to frequency, time and amplitude. KK
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APPENDIX A

IBM-PC ROUTINES FOR REFLECTIVITY CALCULATIONS

Several computer models have been developed for calculating the complex
reflection coefficient for a general multilayered bottom. Unfortunately, the
more complete models run only on large mainframe computers and the existing
models available for microcomputers are usually too simple for serious studies.
For certain applications such as on board ships and aircraft and in research
environments where access to large computers is lacking or troublesome, it would
be desirable to convert some of the large and general reflection loss programs

to run on the popular IBM-PC type of personal computer.

Purthermore, it is often also very useful for the reader to have the
opportunity to have an on-line facility to test the influence of the different
bottom parameters on reflectivity. Therefore, an existing general multilayer
model, which is based on the classical Thompson-Baskell transfer matrix tech-

nique and runs on a UNIVAC system, has been rewritten in MICROSOFT FORTRAN.

This allows double precision of complex variables (in 16¥byte length) to take

advantage of the 8087 co-processor to run on IBM-PC family microcomputers. The

program will not run without the 8087 co-processor.

The model calculates the reflection loss and the phase shift as a function
of angle of incidence and frequency for a multilayered bottom, taking into
account shear waves and attenuation. Additional procedures for disk file

manipulations and display of results have also been developed.

The model is not an operational one and no special techniques, such as
Knopoff's method, have been used to improve numerical accuracy for the matrix
operations. Therefore, for higher frequencies and close to grazing, lack of

accuracy and floating point overflow can occur. Some of these numerical prob-
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lems have been countered by dropping deeper layers when the potentials in a
layer were very small. Purthermore, no input data checking or error handling
has been included. However, despite these shortcomings it was felt that such a

PC facility could be useful and therefore is included.

The following will explain the different procedures and illustrate them by

some examples.

The disk "REPLOSS" contains several programs. The two main ones are
LAYER3.EXE and LAYER4.EXE which do the loss calculations: LAYER3 for a variable
angle of incidence and fixed frequency, and LAYER4 for a variable frequency and
fixed angle of incidence. PL2.BAS and PL4.BAS plot loss and phase as a function
of angle of incidence and frequency, respectively. HELP.BAS is the program

which displays the different options on the screen.

The input files contain the relative acoustical parameters for the layers
and on this disk are usually named such as FLOOR1.DAT, although such nomencla-
ture is not required as long as it is a valid file name with the DAT extension.
The output files from LAYER3 and LAYER4 contain the reflection loss and phase
shift as a function of either angle or frequency and are on the disk named,
respectively, RESV18.DAT or RESFl18.DAT, indicating whether the result is a

function of angle or frequency.

The programs CREATE.BAT, LIST.BAT, and FILES.BAT are utility programs for
editing or creating new input files for the acoustic parameters of the bottom,
for 1listing a file, and for displaying all the FLOOR and RES files on a given
disk. Programs PLOTV.BAT, PLOTF.BAT, HELP.BAT, LOSSV.BAT, and LOSSF.BAT are

batch programs used to tie it all together.
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HOW TO RUN THE PROGRAM

Before using the program, prepare a work disk in the following way. Format
a disk using the /S option and copy ontec it from your DOS disk the files
BASICA.COM, GRAPHICS.COM and EDLIN.COM and finally all the files on the REFLOSS

disk. Set aside the original and use the work disk.

To start, boot the disk by pressing simultaneously the following three keys
<Ctrl> <aAlt> and <Delete>, or from DOS type HELP. The following menu will

appear:

HELP MENU

---CREATE 'FILENAME'.DAT---Use to create an layer input file for LOSSV/LOSSF.

-==LIST 'FILENAME' DAT-~-List a data file. Do not include extension.

~-PILES--Lists all data files of the type FLOOR*.DAT and RES*.DAT on the disk.

-=-=10SSV--~Calculates the reflection loss as function of angle of incidence.
-~=~LOSSP~---Calculates the reflection loss as function of frequency.

-=-=~PLOTV/PLOTFP-~-Plots loss and phase as function of angle or frequency.

---QUIT---

ENTER YOUR SELECTION -->

As an exuample of how to use the CREATE option, we will consider a bottom
consisting of two layers on top of a half-space with the characteristics shown
below, where ALPHA is the compressional wave velocity, BETA the shear wave
velocity, RHO the wet density, AR the compressional wave attenuation in dB/wave-
length, AB the shear wave attenuation in dB/wavelength and DEP the layer

thickness.
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wWater
CW=1520 m/s RHO=1.03g/cc

l, Layer
ALPHA=1605m/s BETA=530m/s RHO=1.95g/cc AA=0.4 DEP=1.0m
=1.,055 =0.35 =]1.89

Layer
ALPHA=1720m/s BETA=680m/s RHO=2.11g/cc AA=0.6 AB=0.8 DEP=l.5m
=0.8 =].5

Half-Space
ALPHA=2840m/s BETA=1670m/s RHO=2.27g/cc AA=1.0 AB=l.5
=] .87 =1.1 =22 =1.0 =1.5
Since the programs LAYER3 and LAYER4 require the relative velocities and
relative densities, these must be calculated and the results are shown on the

line below the absolute values. Therefore, to create an input file named

FLOOR12.DAT, using the above example, type CREATE FLOOR12 <ENTER>. The computer

will display:

A>EDLIN PLOOR12.DAT

New file
*

The program uses the DOS line editor EDLIN, but any preferred editor could

be used. "I" starts the insert mode and “C (same as <Ctrl> C) ends inserting.

The "E" ends editing and saves the file to disk. For further details concerning
the use of EDLIN to edit an existing file, consult the DOS manual. Enter I and

insert values calculated in the example shown, creating the file on screen:

RS g s g

*1

1:%2

2:%1.055 0.35 1.89 0.4 0.6 1.0
3:*1.13 0.45 2.05 0.6 0.8 1.5
4:*1.87 1.1 2.2 1.0 1.5

5:*°C

WV = -

*E

where Line 1: is the number of layers.
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To indicate the end of inserting the calculated values as shown above, type

“C and complete editing with E.

To calculate the reflection loss as a function of angle, type LOSSV from
the HELP menu. For a hard copy of the results, ready the printer and type
<Ctrl> P before <ENTER>. Do not forget to turn the printer off by typing <Ctrl>

P again when the listing is terminated.

The program LAYER3.EXE will load and prompt:

LAYER CONSTANTS FROM DISK FILE (Y/N)?

If yes, the program will ask for the name of the file to use. Type the entire
filename and extension. When the file data comes on the screen, verify by yes
or no that it is the file you want to use. If yes, the program will ask for the
minimum angle, the angle increment, and the maximum angle. Type in these angle
values. The program will then ask for the frequency. Type in the frequency

value.

At the termination of the LOSS program, you have the option to write the
results to a disk file for subsequent processing such as for graphic displays.
Choose a filename which relates to the input filename and shows the type of cal-

culation (V or F). For the preceding example, the filename could be RESV12.DAT.

The program LOSSF, which calculates losses as a function of frequency,

works in the same way as LOSSV.

To plot the angle-dependent results, type PLOTV. The program will ask for
the name of the output file (RES*.DAT) which contains the results to be dis-
played. The filename should match the type of plot selected (V or F) and must

include the .DAT extension. For example, to plot angle-dependent results from

RESV1B8.DAT, which is in drive A, enter A:RESV1S8.DAT.
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If the PC is connected to a DOT matrix printer which can produce graphics,
print a hard copy of the results by pressing <Shift> <PrtSc>. To continue, X
press a key. Angswer "Y" if you want to leave PLOTV or PLOTF and return to the
HELP MENU. A similar procedure to plot results as a function of frequency is

contained in PLOTF and works in the same way.

Figures A-1 and A-2 show the results for an 18-layer sample input file,

FLOOR18.DAT, giving the reflection loss as a function of frequency and angle of

I
W e B e 2

incidence. The phase shift is omitted but could also have been included if

ol

required.

SN

Sometimes it is convenient to see what data files of the format FLOOR*.DAT

and RES*.DAT exist on a disk. Selecting FILES from system will display them on

the monitor. Another facility available to display a data file is LIST, which

when used, must contain the file name, but without the extension .DAT (e.q.,

-

LIST RESF4).

K I I

Figqure A-3 shows the acoustical parameters for some FLOOR*.DAT files on the

disk corresponding to different numbers of layers.

o

QUIT does what it says and clears the screen.
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Figure A-1. Reflection Loss as Function of Frequency (18 layers)

8. RESULS, DAT ;
: FREQUENCY= 3000 r

- . 1 o | Ii": J
. - v l._".‘“ I, f o .‘.|Jil.li . 1
) g \f i |
TR B - _ , |
¢ mow % W e s w W%

' ANGLE ! INCIDENCE |

Figqure A-2. Reflection Loss as Function of Angle (18 layers )

.........



™D 8129

INPUT FILE NAME -- FLOORO.DAT
ALPHA BETA RHO AA AB DEPTH

1.130 .400 2.050 1.500 2.500

INPUT FILE NAME -- FLOOR1.DAT
ALPHA BETA RHO AA AB DEPTH

1.055 .260 1.890 1.000 1.500 1.000
1.130 .400 2.050 1.500 2.500

INPUT FILE NAME -- FLOOR2.DAT
ALPHA BETA RHO AA AB DEPTH
1.0855 .350 1.890 .400 .600 1.000

1.130 .450 2.050 .600 .800 1.500
1.055 1.100 2.200 1.000 1.500

INPUT FILE NAME -- FLOOR3.DAT

ALPHA BETA RHO AR AB DEPTH
.970 - .200 1.500 .100 .100 .500
1.040 .400 1.800 .400 .600 1.000

1.130 .600 2.050 .600 .900 1.500
1.870 1.100 2.200 1.200 1.500

INPUT FILE NAME -- FLOOR4.DAT

ALPHA BETA RHO AA AB DEPTH

.970 .0lo 1.300 .300 .600 1.000
1.050 .100 1.600 .500 .600 2.000
1.130 .300 1.900 .800 1.000 1.500
1.300 .400 2.050 1.200 1.200 .500
1.870 1.100 2.200 1.500 2.500

Figqure A-3. Content of FLOOR*.DAT Files



INPUT FILE NAME -- FLOOR18.D

ALPHA BETA

.960 .050
.985 .050
1.030 .100
.960 .050
1.030 .100
.980 .050
1.025 .100
1.040 .150
1.075 .200
1.010 .100
1.100 .250
.975 .050
.985 .100
975 .100
. 965 .100
l1.030 .150
1.110 .300
.980 .100
1.050 .200

Figure A-3.

AT

REO

1.350
1.400
1.700
1.350
1.700
1.400
1.650
1.750
1.900
1.550
1.950
1.400
1.500
1.450
1.400
1.750
2.100
1.450
1.800

Content of FLOOR*.DAT Files (Cont'd)

R N TN R OO D0

.100
.100
.200
.100
.500
.100
.500
.500
.700
.500
1.000
.200
.200
.200
.200
.500
1.000
.200
.700

[

AB

.100
.100
.200
.100
.500
.100
.500
.500
.700
.500
1.000
.200
.200
.200
.200
.500
1.000
.200
.700

Wt

DO

TD 8129

DEPTH

1.000
.450
.200
.600
.250
.750
.350
.400
.350
.100
.250
.750
.500

1,200

2.500
.300
.500

1.000

A-9/a-10
Reverse Blank

‘.0'~.

00

v

l‘l'
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APPENDIX B

HALF-SPACE PARAMETERS

Information concerning the vertical incidence reflection coefficient and
the intromission angle or critical angle can be used to quickly calculate the
equivalent density and sound velocity at the water-sediment interface if we

assume the bottom to act as a half-space.

From chapter 4 we have for the reflection coefficient this expression:

_ pcosd-\1/a®-sin’§
p cos §+\/1/a® - sin? @

R

For vertical incidence, it is reduced to:
pa-1

Rvert = Do+

or
1 + Ryen
1 - Rvert

The other information we have is from the reflection coefficient as a func-

pa=

tion of angle. If a <1, we have the intromission angle for which the loss is

maximum and a sudden shift in phase from 0° to 180° with the angle being deter-

mined by:

For @ > 1, we have a critical angle case where the angle is determined by:
_ . 1
8. = arc sin (—).
a
which enables us to calculate a and 0 if R,en and fg or . are observed.
Figure B-1 shows the relationship between the vertical incidence loss (-20 -
log R) , relative velocity, relative density and the characteristic angle

involved. Also plotted is the curve corresponding to Woods equation, relating

density, velocity and porosity. Because of the marked intersection between the

B-1
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:' loss curves and the angle curves, a good determination of @ and P is thecreti-

cally possible.

As an example, look at figure 4-2, which has a vertical loss L = 16.5 dB
A
E:!; and fg = 76°. Figure B-1 indicates that a = 0.975 and p = 1.38 fully in agreement

" with the measured values.

*_f' velocity

30 I S N S T A e T S S v S\ R S .05 A

e ¢4’ critical

angle— ————— ——-.

angle- -- - - - - C e

S PO~ —PT - P o Fom = i o P e m e e - —_

e TR e TR e 1T et 1l il =~ porestty. — - —— -
KR B Y < v TS T S ¢Sy T — R P e sy

L Figure B-1l. Relationship between Vertical Incidence Loss, Relative Velocity

o Relative Density, and Characteristic Angle

ih B-2
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APPENDIX C

ACOUSTIC CHARACTERISTICS OF THE SEA FLOOR

No doubt there is little purpose in trying to make predictions of the
bottom reflectivity without some a priori knowledge of the layering of the
bottom and its acoustical parameters. Several measurements have been made using
echo soundings, seismic profiling, laboratory measurements on core and drilling
samples, and most important of all in situ measurements. Also inverse methods
such as using some knowledge about the bottom and then fitting modelled results
to the experimental reflection or transmission loss data have yielded valuable
information concerning certain bottom parameters. No attempt will be made to
look into the physics of special models such as Biot, since it is the conviction
of the author that such refinements are not yet required as long we are missing
first order data for a large number of cases for practical requirements in ASW

predictions.

Since our knowledge in this field is continually changing, this appendix
will only summarize the range of the values of some of the acoustic parameters
used for bottom reflection coefficient calculations. Readers are recommended to

consult the substantial and recent documentation available.

Let us first list some of the most important geoacoustic values desirable

to know:

a) layer composition

b) 1layer geometry including thickness and slope
c) compressional wave (sound) velocity

d) shear wave velocity

e) density

f) attenuation of compressional waves

c-1
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g) attenuation of shear waves

h) for all of the above parameters, their dependence on depth.

The depth to which information is required depends on the frequency, the
angle of incidence and the impedance of the layers. Usually we are talking of
meters for frequencies in the kHz range down to hundreds of meters or even km

for infra-sonics.

Unfortunately, the available amount of data are insufficient and probably
will stay so, despite a continuing effort in this field caused by an increasing
requirement for a better knowledge due to the development of future realistic
acoustic prediction models. We are, therefore, faced with the reality of life
where we are constrained to use what is available and, supported by marine
geoloqgy, to make interpolations and extrapolations. We are also required to do
some intelligent Quessing in order to obtain the needed geocacoustical parameters
for the bottom of interest. A large number of measurements on marine sediments
have been made in the past years, and to the author's knowlgdge, the most
complete critical review and compilation of these has been made by Edwin L.
Hamilton, Naval Ocean Systems Center, San Diego. The following are extracts
from his work supplemented by a number of data collected by the SACLANTCEN from

measurements made on bottom cores.

It is not the purpose of this report to go into details on the values of
the acoustic parameters to select for a given situation, but only to give some
guidelines to the user. For more detailed information, one should consult the

most recent relevant information available.

Before quoting possible values for the parameters of interest, 1let us

return briefly to the concept of porosity as discussed in previous chapters.

Porosity 1is an extremely practical parameter used to Jdescribe a marine sediment
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and is defined as the ratio (often in percent) of the void volume to the solid
volume of a sample. Furthermore, it can easily be measured by simple techniques
using a precession scale and even a normal kitchen stove. Suppose the wet sedi~
ment sample weighed W gr before any loss of porous liquid and weighed D gr after
being dried at a temperature below which chemical-bound water is not released.
From the definition of the porosity n and some straightforward calculations, we

arrive at the following expression for the sample's porosity:

W-D

. Pe” ~w

- W-D
Tl D T

with Ps as the solid bulk density under the assumption that no decomposition
takes place and that the solid bulk density remains constant. In general, by

using pPs = 2.7 good practical results are obtained.

Other important parameters exist to describe marine sediments such as grain

size; however, these are not as easily measured as the porosity.

1) Compressional Wave Velocity and Density

Previously, we investigated the use of porosity as the parameter in the
Woods equation to relate sound velocity and wet density under the assumption
that one could regard a sediment as a two- or three~component mixture and to
show that these assumptions are fairly valid. Figures C-1 and C-2 show the
relative density and compressional (sound) velocity as a function of porosity
based on approximately 15,000 and 8000 samples, respectively, from both deep sea

and continental shelf cores.

Table C-1 1lists some characteristic values of the ranges of porosity n,
density and compressional wave velocity for different sediment types found in

certain marine environments important for ASW.
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Table C-1. Characteristic Values for Density, Sound Velocity, and Porosity ;:::
v,
[
for Various Sediment Types .:::
°
8
e
Sediment Type Relative Density Relative Sound Vel. Porosity § ::t:
X
()
Continental o
Shelf .
. Sand .s.;
B
Coarse 1.99 1.20 39 ".g‘,:
.4
o
Fine 1.90 1.15 46 oty
®
Very fine 1.82 1.12 50 ! ';‘:
« N
1)
silty sand 1.74 1.08 55 ‘:}:
O
Q":
sandy silt 1.74 1.08 54 o
L
silt 1.71 1.06 56 -4
4(5
.’\-
Sand-gilt-clay 1.56 1.03 66 Q04
)
Clayey silt 1.46 1.01 72 Wt
Silty clay 1.39 0.994 76 :‘.:!ii
.'l'.
"wi
Abyssal Plain 0:
Clayey silt 1.43 0.999 74 'ty
0,0..
silty clay 1.32 0.991 81 D
Clay 1.33 0.983 80 B
. U
Ol
Abyssal Hills s
Clayey silt 1.32 0.995 81 .‘"‘
e
Silty clay 1.32 0.986 81 e
2
0."
Clay 1.39 0.976 78 !
- .'.|::
Sand-silt-clay 1.41 1.02 75 .
oA
Silt-clay 1.38 1.00 77 . :
&
0
Rocks vy
e
St
Sedimen. rock 2.55 2.45 °
e,
Basalt 2.60 3.47 !
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In almost all cases, measurements in nature have shown a distinct increase
in the compressional wave velocity with depth, with the result that, at smaller
grazing angles and low frequencies, the sound energy penetrating into the bottom
is not only being reflected but also refracted back into the water column.
Examples of such refracted waves are observable in figures 14-6 and 14-9 in

chapter 14.

This gradient could be taken into account when preparing input data to the
two computer models covered in appendix A by creating a set of thin layers
simulating a velocity gradient if required. Good values to use for the gradient

of the compressional waves in the upper layers range from 1.1 to 1.5 s,
2) Shear Wave Velocity

If our knowledge of compressional wave velocities is somewhat 1limited,
unfortunately much less is available concerning shear wave velocities. Perhaps
for two reasons: One is that historically in ASW it was electronic engineers or
scientists who were the pioneers. They were little acquainted with the exis-
tence and importance of shear waves from the theory of elasticity of solids.
More important is the fact that it is much more difficult to measure shear wave
characteristics than compressional wave characteristics for several reasons.
One problem is to ensure proper coupling between the measuring probes and the
sediment. Another is the fact that shear in a sediment to a certain extent is
transmitted through its chemical bounds which are easily destroyed either by the
sediment sampling or by the insertion of the measuring sensors in the samples.
This is very unfortunate, since for consolidated sediments, shear waves can be
extremely important because of the role they play in carrying converted incident

compressional energy away from the water-sediment boundary and as such are

subject to a higher attenuation and may be converted into interface waves
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(%
. :,:,
(Scholte type). All these factors result in a softening effect and thereby a :::cﬁ
.9:)
reduction of the bottom reflectivity. ; .:::
e
4
Studies have shown that shear wave velocities can be related to compres- |:::|
ity
' A
sional waves velocities, but unfortunately not in the same fixed ratio. For .":'.':‘
R
i
practical reasons, three intervals of relative compressional wave velocities a ®
Uy
)
s O
with their associated relative shear wave velocity B dependence have been iden- .:':~
DA
0,8
g
tified. Let us look at those cases: '0.:::-'
- .u'l.
.
a) 0989 < a<1.017 !
¢
B=3.884 - a-3.765 e
.".l
It
)
b) 1.017 < a<1.079 \
gt
B =1.137 - a - 0.971 S
3
v'l:s
¢)  1.079< a < 1.406 3R
B=0648-1.136-a+0719-a° o
e,
"‘t;"
To obtain an idea of the relative shear wave velocity as a function of .::if
o YL}
depth below the water-sediment interface, the following expression for fine sand .
¢
can be used: C&
W
B =0.084 x D%%° %
-\Sl‘
where D is depth of the sediment in meters. ®
W
)
|’.:;
3) Attenuation of Compressicnal Waves ‘."
- et
‘.'l‘.
A large number of measurements of the attenuation of compressional waves in ;‘.
. .‘i
A
marine sediments have been made covering a frequency range from 10 Hz to 1 MHz. Bty
- .‘
N
The results show that the attenuation in dB/m varies remarkably well with the %
L ]
first power of frequency, which again corresponds to a constant dB per wave- 1.:;;
'0|'
. .
length as used in the previous calculations. However, in order to be consistent XN
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with attenuation values reported in the literature, we will use for the attenua- )
tion the expression: 4
: AA = kc ¢ f :
! 1
K 5
: t
' where f is in kHz, AA in dB/m and K. the attenuation coefficient. Also here, as 1
3
R for the densities and compressional wave velocities, we will use porosity as the |,
K r t
v ¥
N independent variable. Figure C-3 shows the result of a large number of measure- ':
* ;
N if
ments indicating a maximum attenuation around a porosity of 50 to 55 percent N :',
N corresponding to silty sand. Por solid rocks like limestone or basalt, k is 3
’l y.
H . 1
in the order of 0.02 to 0.03. ‘l
(]
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N ™
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* Figure C~3. Attenuation Coefficients for Compressional Waves v
! e,
as a Function of Porosity
>
Very little data are available to determine the depth dependence on the 'n:
4
J
compressional wave attenuation, but some data indicates only a little effect in ::
"
c-8 '
)
\
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the first meters of the sediments. For deeper sediments consisting of silt-
clays, the data seems to show an increase with depth, whereas for sand-silt it
appears that the attenuation decreases with about the -1/6 power of the overbur-

den pressure.
4) Attenuation of Shear Waves

Similar to measurements for the compressional waves, measurements of the
attenuation of shear waves indicate a linear relationship. Again, we can use
the expression:

AB=k¢-f
where f is the frequency in kHz, AB in dB/m, and K¢ the attenuation coefficient.

Table C-2 gives examples of values for k for different materials.

Table C-2. Characteristic Values for the Attenuation Coefficient

for Various Sediment Types

Material Ke
Diluvial sand 13.20
Diluvial sand and clay 4.80
Alluvial silt 13.40
Mud (silt-clay) 17.30
Water—-saturated clay 15.20
Tertiary mudstone 10.10
Solenhofen limestone 0.04
Chalk 0.10
Basalt 0.07

Concerning the depth dependence of the shear wave attenuation, it can be

assumed that it varies proportionally with the compressional wave attenuation.
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The above values for the gecacoustical parameters in marine sediments are 4
only given to show within which values they are to be expected in nature. For )
the purpose of constructing a proper geocacoustical model, readers are referred

to the large and detailed amount of information available in the open

O e

literature.
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